244
Views
0
CrossRef citations to date
0
Altmetric
Article

A discrete element modelling of gravity flow in sublevel caving considering the shape and size distribution of particles

, , &
Pages 255-276 | Received 19 Apr 2022, Accepted 11 Jan 2023, Published online: 23 Jan 2023

References

  • G. Bull and C. Page, Sublevel caving–today’s dependable low-cost ‘ore factory’. Proceedings MassMin, Brisbane, Queensland, Australia, 2000. 29: p. 537–556.
  • R. Kvapil, The mechanics and design of sublevel caving systems, Underground Min. Methods Handbook (1982), pp. 880–897.
  • I. Brunton, Parameters influencing full scale sublevel caving material recovery at the Ridgeway gold mine, Int. J. Rock Mech. Min. Sci. 47 (4) (2010), pp. 647–656. doi:10.1016/j.ijrmms.2009.12.011.
  • W. Hustrulid and R. Kvapil. Sublevel caving–past and future. in Proceedings of the 5th international conference and exhibition on mass mining, Lulea Sweden. 2008.
  • I. Janelid, Sublevel caving: How to use it what are the advantages problems, World Min. September 76 (1968), pp. 78.
  • R. Kvapil, Gravity flow of granular materials in Hoppers and bins in mines—ii. Coarse material, in International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Elsevier, 1965.
  • P. Gustafsson, Waste rock content variations during gravity flow in sublevel caving: Analysis of full-scale experiments and numerical simulations. 1998, Luleå tekniska universitet.
  • G. Chen, Stochastic modeling of rock fragment flow under gravity, Int. J. Rock Mech. Min. Sci. 34 (2) (1997), pp. 323–331. doi:10.1016/S0148-9062(96)00051-4.
  • G. Power, Full scale SLC draw trials at Ridgeway gold mine. Proceedings of MassMin, Santiago, Chile, 2004: p. 225–230.
  • G.R. Power, Modelling granular flow in caving mines: Large scale physical modelling and full scale experiments. 2004.
  • M. Wimmer, Referenced 3D images from inside cavities and behind rings in sublevel caving. Proceedings of the Fragblast, Granada Spain, 2009. 9.
  • I. Brunton, The impact of blasting on sublevel caving material flow behaviour and recovery. 2009.
  • I.J.A.R. Kvapil, Sublevel caving, Int. J. Rock Mech. Min. Sci. 3 (1966), pp. 129–153.
  • J.M. Gurmeet Shekhar, A. Gustafson, and H. Schunnesson, Loading procedure and draw control in LKAB`s sublevel caving mines, (2017). Sweden: Lulea University of Technology.
  • Q. Jia, Laboratory study on three-dimensional characteristics of gravity flow during longitudinal sublevel caving, Int. J. Rock Mech. Min. Sci. 144 (2021), pp. 104815. doi:10.1016/j.ijrmms.2021.104815.
  • K. Esmaieli and J. Hadjigeorgiou, Selecting ore pass-finger raise configurations in underground mines, Rock mech. rock eng. 44 (3) (2011), pp. 291–303. doi:10.1007/s00603-010-0128-z.
  • J. Hadjigeorgiou and J. Lessard, Strategies for restoring material flow in ore and waste pass systems, Int. J. Min. Reclam. Environ. 24 (3) (2010), pp. 267–282. doi:10.1080/17480931003658894.
  • M.E. Pierce, A Model for Gravity Flow of Fragmented Rock in Block Caving Mines, University of Queensland Brisbane, Australia, 2010.
  • L. Wang, New computational framework for modeling the gravity flow behavior of sublevel caving material, Comput. Geotech. 125 (2020), pp. 103675. doi:10.1016/j.compgeo.2020.103675.
  • V. Urli and K. Esmaieli, A stability-economic model for an open stope to prevent dilution using the ore-skin design, Int. J. Rock Mech. Min. Sci. 82 (2016), pp. 71–82. doi:10.1016/j.ijrmms.2015.12.001.
  • V. Lapčević and S. Torbica, Numerical investigation of caved rock mass friction and fragmentation change influence on gravity flow formation in sublevel caving, Minerals 7 (4) (2017), pp. 56. doi:10.3390/min7040056.
  • E. Brown, Block Caving Geomechanics: International Caving Study 1997-2004: Julius Kruttschnitt Mineral Research Centre, Brisbane, Queensland, Australia: The University of Queensland, 2007.
  • R. Kvapil, Gravity Flow in Sublevel and Panel Caving: A Common Sense Approach, Lulea, Sweden: Luleå University of Technology, 2008.
  • G. Dunstan and G. Power, Sublevel caving. SME Mining Engineering Handbook, in Society for Mining, metallurgy and Exploration, <.I.I.A.I.C.U.<. Darling, ed., United States: Inc. pp. 1417–1435. 2011.
  • T. Panczakiewicz, Optimization of the Sublevel Caving Mining Method Investigated by Physical Models, Melbourne, Australia: University of Melbourne, Department of Mining, 1977.
  • M.I. Kosowan, Design and Operational Issues for Increasing Sublevel Cave Intervals at Stobie Mine, Laurentian University, Sudbury, ON, Canada, 2001.
  • M. Wimmer, in Analysis of rock fragmentation and its effect on gravity flow at the Kiruna sublevel caving mine, International Symposium on Rock Fragmentation by Blasting: 24/08/2015-25/08/2015, The Australasian Institute of Mining and Metallurgy, edited by A T Spathis, D P Gribble, A C Torrance and T N Little. Sydney, Australia. pp. 775-791. 2015.
  • A. Nordqvist and M. Wimmer, Large scale field test of gravity flow at the Kiruna mine, in Proceeding of Aachen International Mining Symposia, Sixth International Symposium, High Performance Mining, Aachen, North Rhine-Westphalia, Germany: RWTH Aachen University pp. 621–636, 2014.
  • X. Zhang, G. Tao, and Z. Zhu, Laboratory study of the influence of dip and ore width on gravity flow during longitudinal sublevel caving, Int. J. Rock Mech. Min. Sci. 103 (2018), pp. 179–185. doi:10.1016/j.ijrmms.2018.01.039.
  • P.A. Cundall and O.D. Strack, A discrete numerical model for granular assemblies, Géotechnique 29 (1) (1979), pp. 47–65. doi:10.1680/geot.1979.29.1.47.
  • D. DeGagne and S. McKinnon. The influence of cave mass properties on discrete sublevel cave models. in Golden Rocks 2006, The 41st US Symposium on Rock Mechanics (USRMS), School of Mines Golden, Colorado, United States. 2006. OnePetro.
  • H. Selldén and M. Pierce, PFC3D modelling of flow behaviour in sublevel caving. MassMin 2004—Proceedings, 2004: p. 22–25.
  • S. Xu, A study of gravity flow principles of sublevel caving method in dipping narrow veins, Granular Matter 19 (4) (2017), pp. 1–13. doi:10.1007/s10035-017-0748-z.
  • R. Castro, F. Gonzalez, and E. Arancibia, Development of a gravity flow numerical model for the evaluation of drawpoint spacing for block/panel caving, J. South. Afr. Instit. Min. Metall. 109 (7) (2009), pp. 393–400.
  • D. Johansson, T. Villegas, and F. Ouchterlony, Dynamic blast compaction of some granular materials: Small-scale tests and numerical modelling of a mining-related problem, Int. J. Min. Mineral Eng. 2 (2) (2010), pp. 79–100. doi:10.1504/IJMME.2010.035311.
  • R. Taghavi and M. Pierce. Modeling flow of fragmented rock with 3DEC: A polyhedral DEM approach. in Proceedings of the Second International FLAC/DEM Symposium, Itasca Consulting Group, Inc., Minneapolis, paper. 2011.
  • T.A.E. Group, Sublevel Caving in Gushfil Mine, Iran, Isfahan, Bama Company, 2020.
  • V. Šmilauer, Yade Documentation 2nd ed, Transp. Porous Media, 2015, The Yade Project. https://www.yade-dem.org/doc/publications.html
  • K. Thoeni, A 3D discrete element modelling approach for rockfall analysis with drapery systems, Int. J. Rock Mech. Min. Sci. 68 (2014), pp. 107–119. doi:10.1016/j.ijrmms.2014.02.008.
  • C. Boon, G. Houlsby, and S. Utili, Powder technology. A new contact detection algorithm for three-dimensional non spherical particles. 248 (2013), pp. 94–102.
  • L. Scholtès and F.-V. Donzé, A DEM model for soft and hard rocks: Role of grain interlocking on strength, J Mech Phys Solids 61 (2) (2013), pp. 352–369. doi:10.1016/j.jmps.2012.10.005.
  • M. Haustein, A. Gladkyy, and R. Schwarze, Discrete element modeling of deformable particles in YADE, SoftwareX 6 (2017), pp. 118–123. doi:10.1016/j.softx.2017.05.001.
  • O.R. Walton and R.L. Braun, Viscosity, granular‐temperature, and stress calculations for shearing assemblies of inelastic, frictional disks, J Rheol (N Y N Y) 30 (5) (1986), pp. 949–980. doi:10.1122/1.549893.
  • A. Rustan Gravity flow of broken rock: What is known and unknown. in International Conference & Exhibition on Mass Mining: 29/10/2000-02/11/2000, Brisbane, Queensland, Australia. 2000. The Australasian Institute of Mining and Metallurgy.
  • R. Maripuu, Investigation of Fragment Size and Shape from Sublevel Caving at LKAB, Royal Institute of Technology, Stockholm, 1968.
  • D.C. Froehlich, Mass angle of repose of open-graded rock riprap, J. irrig. drain. eng. 137 (7) (2011), pp. 454–461. doi:10.1061/(ASCE)IR.1943-4774.0000316.
  • C. Quinteiro, L. Larsson, and W. Hustrulid, Theory and practice of very-large-scale sublevel caving, Underground Min. Methods Eng. Fundam. Int. Case Stud. 8307 (2001), pp. 381–384.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.