512
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploring the capabilities of portable device photogrammetry for 3D surface roughness evaluation

, , , , ORCID Icon &
Pages 630-647 | Received 25 Apr 2023, Accepted 07 Jul 2023, Published online: 14 Jul 2023

References

  • J.P. Monticeli Roughness characterization of discontinuity sets by profilometer and scanner images, ISRM Regional Symposium-8th South American Congress on Rock Mechanics, Buenos Aires, Argentina, OnePetro, 2015.
  • V.P. Cantarella, JRC estimation with 3D laser scanner images – SBMR 2016, Brazilian Symposium on Rock Mechanics, Belo Horizonte, Minas Gerais, Brazil, 2016.
  • N. Fardin, Q. Feng, and O. Stephansson, Application of a new in situ 3D laser scanner to study the scale effect on the rock joint surface roughness, Int. J. Rock Mech. Min. 41 (2) (2004), pp. 329–335. https://doi.org/10.1016/S1365-1609(03)00111-4.
  • G. Luetzenburg, A. Kroon, and A.A. Bjørk, Evaluation of the Apple iPhone 12 Pro LiDAR for an application in geosciences, Sci. Rep. 11 (1) (2021), pp. 22221. https://doi.org/10.1038/s41598-021-01763-9.
  • Y.A. Asmare, L.D. Stetler, and Z.J. Hladysz, A New Method for Estimating 3D Rock Discontinuity Roughness from a Terrestrial LiDAR Data using Slope Angles of Triangular Facets, 48th U.S. Rock Mechanics/Geomechanics Symposium, Minneapolis, Minnesota, United States, 2014.
  • J. Sirkiä, Photogrammetric calculation of JRC for rock slope support design, Proceedings of the 8th International Symposium on Ground Support in Mining and Underground Construction, Luleå, Sweden, 2016.
  • P. An, K. Fang, Q. Jiang, H. Zhang, and Y. Zhang, et al., Measurement of rock joint surfaces by using smartphone structure from motion (SfM) photogrammetry, sensors 21 (3) (2021), pp. 922. https://doi.org/10.3390/s21030922.
  • N.B.V. choubey, The Shear Strength of Rock Joints in Theory and Practice, Rock Mech. 10 (1–2) (1977), pp. 1–54. https://doi.org/10.1007/BF01261801.
  • A.J. Beer and J.S. Coggan, Technical note estimation of the joint roughness coefficient (JRC) by visual comparison, Rock Mech. Rock Eng 35 (1) (2002), pp. 65–74. https://doi.org/10.1007/s006030200009.
  • G. Weissbach, A new method for the determination of the roughness of rock joints in the laboratory, Int. J. Rock Mech. Rock Eng 15 (3) (1978), pp. 131–133. https://doi.org/10.1016/0148-9062(78)90007-4.
  • P. Alameda-Hernández, J. Jiménez-Perálvarez, J.A. Palenzuela, R. El Hamdouni, C. Irigaray, M.A. Cabrerizo, and J. Chacón, Improvement of the JRC calculation using different parameters obtained through a new survey method applied to rock discontinuities, Rock Mech. Rock Eng 47 (6) (2014), pp. 2047–2060. https://doi.org/10.1007/s00603-013-0532-2.
  • R. Tse and D. Cruden, Estimating joint roughness coefficients, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 16 (5) (1979), pp. 303–307. Elsevier. https://doi.org/10.1016/0148-9062(79)90241-9.
  • N.H. Maerz, J.A. Franklin, and C.P. Bennett, Joint roughness measurement using shadow profilometry, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 27 (5) (1990), pp. 329–343. Elsevier. https://doi.org/10.1016/0148-9062(90)92708-M.
  • B.S. Tatone and G. Grasselli, A new 2D discontinuity roughness parameter and its correlation with JRC, Int. J. Rock Mech. Min. Sci. 47 (8) (2010), pp. 1391–1400. https://doi.org/10.1016/j.ijrmms.2010.06.006.
  • H. Bao, Geometrical heterogeneity of the joint roughness coefficient revealed by 3D laser scanning, Eng. Geol. 265 (2020), pp. 105415. https://doi.org/10.1016/j.enggeo.2019.105415.
  • C.-C. Xia, New Peak Shear Strength Criterion of Rock Joints Based on Quantified Surface Description, Rock Mech. Rock Eng. 47 (2) (2013), pp. 387–400. https://doi.org/10.1007/s00603-013-0395-6.
  • T. Heinze, S. Frank, and S. Wohnlich, FSAT – A fracture surface analysis toolbox in MATLAB to compare 2D and 3D surface measures, Comput. Geotech. 132 (2021), pp. 103997. https://doi.org/10.1016/j.compgeo.2020.103997.
  • G. Grasselli, P. Egger, Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters, Int. J. Rock Mech. Min. Sci. 40 (1)(2003), pp. 25–40. https://doi.org/10.1016/S1365-1609(02)00101-6.
  • B.S. Tatone, Quantitative Characterization of Natural Rock Discontinuity Roughness In-situ and in the Laboratory, University of Toronto, Toronto, Canada, 2009.
  • Q. Jiang, B. Yang, F. Yan, C. Liu, Y. Shi, L. Li, New Method for Characterizing the Shear Damage of Natural Rock Joint Based on 3D Engraving and 3D Scanning, Int. J. Geomech. 20 (2), (2020), https://doi.org/10.1061/(ASCE)GM.1943-5622.0001575.
  • Q. Jiang, Y. Yang, F. Yan, J. Zhou, S. Li, B. Yang, and H. Zheng, et al., Deformation and failure behaviours of rock-concrete interfaces with natural morphology under shear testing, Constr. Build. Mater. 293 (2021), pp. 123468. https://doi.org/10.1016/j.conbuildmat.2021.123468.
  • J.D. Aubertin and D.J. Hutchinson, Scale-dependent rock surface characterization using LiDAR surveys, Eng. Geol. 301 (2022), pp. 301. https://doi.org/10.1016/j.enggeo.2022.106614.
  • M. Lato, M.S. Diederichs, D.J. Hutchinson, and R. Harrap, et al., Optimization of LiDAR scanning and processing for automated structural evaluation of discontinuities in rockmasses, Int. J. Rock Mech. Min. Sci. 46 (1) (2009), pp. 194–199. https://doi.org/10.1016/j.ijrmms.2008.04.007.
  • M.J. Westoby, S.A. Dunning, J. Woodward, A.S. Hein, S.M. Marrero, K. Winter, and D.E. Sugden, Interannual surface evolution of an Antarctic blue-ice moraine using multi-temporal DEMs, Earth Surf. Dynam. 4 (2) (2016), pp. 515–529. https://doi.org/10.5194/esurf-4-515-2016.
  • K. Kingsland, Comparative analysis of digital photogrammetry software for cultural heritage, Digit. Appl. Archaeol. Cult. Heritage 18 (2020), pp. e00157. https://doi.org/10.1016/j.daach.2020.e00157.
  • Y. Han, S. Wang, D. Gong, Y. Wang, Y. Wang, and X. Ma, State of the art in digital surface modelling from multi-view high-resolution satellite images, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2 (2020), pp. 351–356. https://doi.org/10.5194/isprs-annals-V-2-2020-351-2020.
  • A. Corradetti, T. Seers, M. Mercuri, C. Calligaris, A. Busetti, and L. Zini, et al., Benchmarking different SfM-MVS photogrammetric and iOS LiDAR acquisition methods for the digital preservation of a short-lived excavation: A case study from an area of sinkhole related subsidence, Remote Sens. 14 (20) (2022), pp. 5187. https://doi.org/10.3390/rs14205187.
  • S. Tavani, A. Billi, A. Corradetti, M. Mercuri, A. Bosman, M. Cuffaro, T. Seers, and E. Carminati, et al., Smartphone assisted fieldwork: Towards the digital transition of geoscience fieldwork using LiDAR-equipped iPhones, Earth-Sci. Rev. 227 (2022), pp. 2022. 227. https://doi.org/10.1016/j.earscirev.2022.103969.
  • N. Micheletti, J.H. Chandler, and S.N. Lane, Investigating the geomorphological potential of freely available and accessible structure‐from‐motion photogrammetry using a smartphone, Earth Surf. Process. Landforms 40 (4) (2015), pp. 473–486. https://doi.org/10.1002/esp.3648.
  • M. Jaud, M. Kervot, C. Delacourt, and S. Bertin, et al., Potential of smartphone SfM photogrammetry to measure coastal morphodynamics, Remote Sens. 11 (19) (2019), pp. 2242. https://doi.org/10.3390/rs11192242.
  • P. An, K. Fang, Y. Zhang, Y. Jiang, and Y. Yang, et al., Assessment of the trueness and precision of smartphone photogrammetry for rock joint roughness measurement, measurement 188 (2022), pp. 110598. https://doi.org/10.1016/j.measurement.2021.110598.
  • K. Fang, J. Zhang, H. Tang, X. Hu, H. Yuan, X. Wang, P. An, and B. Ding, et al., A quick and low-cost smartphone photogrammetry method for obtaining 3D particle size and shape, Eng. Geol. 322 (2023), pp. 107170. https://doi.org/10.1016/j.enggeo.2023.107170.
  • K. Fang, P. An, H. Tang, J. Tu, S. Jia, M. Miao, and A. Dong, et al., Application of a multi-smartphone measurement system in slope model tests, Eng. Geol. 295 (2021), pp. 106424. https://doi.org/10.1016/j.enggeo.2021.106424.
  • K. Fang et al, Comprehensive assessment of the performance of a multismartphone measurement system for landslide model test, Landslides. 20 (2023), pp. 845–864. https://doi.org/10.1007/s10346-022-02009-z.
  • R.N. Gillihan. Accuracy Comparisons of iPhone 12 Pro LiDAR Outputs, University of Colorado, Denver, CO, United States, 2021.
  • Y. Ge, K. Chen, G. Liu, Y. Zhang, and H. Tang, et al., A low-cost approach for the estimation of rock joint roughness using photogrammetry, Eng. Geol. 305 (2022), pp. 106726. https://doi.org/10.1016/j.enggeo.2022.106726.
  • A. Paixão, J. Muralha, R. Resende, and E. Fortunato, Close-range photogrammetry for 3D rock joint roughness evaluation, Rock Mech. Rock Eng 55 (6) (2022), pp. 3213–3233. https://doi.org/10.1007/s00603-022-02789-9.
  • D. Lague, N. Brodu, and J. Leroux, Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (NZ), ISPRS J. Photogramm. Remote Sens. 82 (2013), pp. 10–26. https://doi.org/10.1016/j.isprsjprs.2013.04.009.
  • V. Zahs, L. Winiwarter, K. Anders, J.G. Williams, M. Rutzinger, and B. Höfle, et al., Correspondence-drivenplane-based M3C2 for lower uncertainty in 3D topographic change quantification, ISPRS J. Photogramm. Remote Sens. 183 (2022), pp. 541–559. https://doi.org/10.1016/j.isprsjprs.2021.11.018.
  • A.R. Beer, J.M. Turowski, and J.W. Kirchner, Spatial patterns of erosion in a bedrock gorge, J. Geophys. Res. Earth Surf. 122 (1) (2017), pp. 191–214. https://doi.org/10.1002/2016JF003850.
  • V. Zahs, M. Hämmerle, K. Anders, S. Hecht, R. Sailer, M. Rutzinger, J.G. Williams, and B. Höfle, Multi‐temporal 3D point cloud‐based quantification and analysis of geomorphological activity at an alpine rock glacier using airborne and terrestrial LiDAR, Permafr. Periglac. Process. (2019), https://doi.org/10.1002/ppp.2004.
  • A. Spreafico, F. Chiabrando, L. Teppati Losè, and F. Giulio Tonolo, The ipad pro built-in lidar sensor: 3d rapid mapping tests and quality assessment, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 43 (2021), pp. 63–69. https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-63-2021.
  • P. Chase, K. Clarke, A. Hawkes, S. Jabari, and J. Jakus, Apple IPhone 13 Pro Lidar Accuracy Assessment for Engineering Applications, Transforming Construction with Reality Capture Technologies: The Digital Reality of Tomorrow, August 23–25, 2022, Fredericton, New Brunswick, Canada, 2022. https://doi.org/10.57922/tcrc.645
  • L.-P. Gelinas, Advanced geotechnical monitoring technology to assess ground support effectiveness, Ground Support 2019: Proceedings of the Ninth International Symposium on Ground Support in Mining and Underground Construction, Perth, WA, Australia, 2019. pp. 59–74. https://doi.org/10.36487/ACG_rep/1925_02_Gelinas.
  • R. Eker, 3d Modelling of a Historic Windmill: Ppk-Aided Terrestrial Photogrammetry Vs Smartphone App. The International Archives of the Photogrammetry, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLIII-B2-2022 (2022), pp. 787–792. https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-787-2022.
  • G. Grasselli, J. Wirth, and P. Egger, Quantitative three-dimensional description of a rough surface and parameter evolution with shearing, Int. J. Rock Mech. Min. Sci. 39 (6) (2002), pp. 789–800. https://doi.org/10.1016/S1365-1609(02)00070-9.
  • H.-S. Jang, S.-S. Kang, and B.-A. Jang, Determination of Joint Roughness Coefficients Using Roughness Parameters, Rock Mech. Rock Eng. 47 (6) (2014), pp. 2061–2073. https://doi.org/10.1007/s00603-013-0535-z.
  • N. Barton, Review of a new shear-strength criterion for rock joints, Eng. Geol. 7 (4) (1973), pp. 287–332. https://doi.org/10.1016/0013-7952(73)90013-6.
  • L. Song, Q. Jiang, L.-F. Li, C. Liu, X.-P. Liu, and J. Xiong, An enhanced index for evaluating natural joint roughness considering multiple morphological factors affecting the shear behavior, Bull. Eng. Geol. Environ 79 (4) (2020), pp. 2037–2057. https://doi.org/10.1007/s10064-019-01700-1.
  • N. Babanouri and S. Karimi Nasab, Proposing Triangulation-Based Measures for Rock Fracture Roughness, Rock Mech. Rock Eng 50 (4) (2016), pp. 1055–1061. https://doi.org/10.1007/s00603-016-1139-1.
  • L. Ban, W. Du, C. Qi, and C. Zhu, et al., Modified 2D roughness parameters for rock joints at two different scales and their correlation with JRC, Int. J. Rock Mech. Min. Sci. 137 (2021), pp. 104549. https://doi.org/10.1016/j.ijrmms.2020.104549.
  • X. Chen, A Simplified form of Grasselli’s 3D Roughness Measure θ*max/(C + 1), Rock Mech. Rock Eng. 54 (8) (2021), pp. 4329–4346. https://doi.org/10.1007/s00603-021-02512-0.
  • X. Chen, The physical meaning of Grasselli’s morphology parameters and its correlations with several other 2D fracture roughness parameters, Int. J. Rock Mech. Min. Sci. 145 (2021), pp. 104854. https://doi.org/10.1016/j.ijrmms.2021.104854.
  • American Society for Photogrammetry and Remote Sensing (ASPRS), ASPRS Positional Accuracy Standards for Digital Geospatial Data, Photogramm. Eng. Remote Sensing. 81 (2015), pp. A1–A26.
  • A. Zhang, A simulation study on stress-seepage characteristics of 3D rough single fracture based on fluid-structure interaction, J. Pet. Sci. Eng. 211 (2022), pp. 110215. https://doi.org/10.1016/j.petrol.2022.110215.