82
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Experimental study on spatial evolution of mode-I and mode-II fracture toughness of cemented paste backfill under external sulphate attack

& ORCID Icon
Pages 884-903 | Received 31 May 2023, Accepted 10 Sep 2023, Published online: 14 Sep 2023

References

  • C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng. 144 (2019), pp. 106025. doi:10.1016/j.mineng.2019.106025.
  • W. Li and M. Fall, Sulphate effect on the early age strength and self-desiccation of cemented paste backfill, Constr. Build. Mater. 106 (2016), pp. 296–304. doi:10.1016/j.conbuildmat.2015.12.124.
  • B. Yan, H. Jia, E. Yilmaz, X. Lai, P. Shan, and C. Hou, Numerical study on microscale and macroscale strength behaviors of hardening cemented paste backfill, Constr. Build. Mater. 321 (2022), pp. 126327. doi:10.1016/j.conbuildmat.2022.126327.
  • A. Wu, Z. Ruan, and J. Wang, Rheological behavior of paste in metal mines, Int. J. Miner. Metall. Mater. 29 (4) (2022), pp. 717–726. doi:10.1007/s12613-022-2423-6.
  • J. Li, S. Cao, E. Yilmaz, and Y. Liu, Compressive fatigue behavior and failure evolution of additive fiber-reinforced cemented tailings composites, Int. J. Miner. Metall. Mater. 29 (2) (2022), pp. 345–355. doi:10.1007/s12613-021-2351-x.
  • H. Jiang, L. Ren, Q. Zhang, J. Zheng, and L. Cui, Strength and microstructural evolution of alkali-activated slag-based cemented paste backfill: Coupled effects of activator composition and temperature, Pow. Technol. 401 (2022), pp. 117322. doi:10.1016/j.powtec.2022.117322.
  • D. Wu, R.K. Zhao, C.W. Xie, and S. Liu, Effect of curing humidity on performance of cemented paste backfill, Int. J. Miner. Metall. Mater. 27 (8) (2020), pp. 1046–1053. doi:10.1007/s12613-020-1970-y.
  • W. Xu, M. Han, and P. Li, Influence of freeze–thaw cycles on mechanical responses of cemented paste tailings in surface storage, Int. J. Min. Reclam. Env 34 (5) (2020), pp. 326–342. doi:10.1080/17480930.2019.1595903.
  • J. Haiqiang, M. Fall, and L. Cui, Yield stress of cemented paste backfill in sub-zero environments: Experimental results, Miner. Eng. 92 (2016), pp. 141–150. doi:10.1016/j.mineng.2016.03.014.
  • Z. Zhao, S. Cao, and E. Yilmaz, Effect of layer thickness on flexural property and microstructure of 3D printed rhomboid polymer reinforced cemented tailings composites, Int. J. Miner. Metall. Mater. 30 (2) (2022), pp. 236–249. doi:10.1007/s12613-022-2557-6.
  • B. Wang, Q. Li, R. Wang, D. Wang, and P. Dong, Mechanical strength and hydration exothermic behavior of cemented paste backfill with early-strength agent under low temperature, Int. J. Min. Reclam. Env 36 (10) (2022), pp. 710–723. doi:10.1080/17480930.2022.2128590.
  • J. McLean and L. Cui, Multiscale geomechanical behavior of fiber-reinforced cementitious composites under cyclic loading conditions—a review, Front. Mater 8 (2021), pp. 1–13. doi:10.3389/fmats.2021.759126.
  • H. Zhang, S. Cao, and E. Yilmaz, Influence of 3D-printed polymer structures on dynamic splitting and crack propagation behavior of cementitious tailings backfill, Constr. Build. Mater. 343 (2022), pp. 128137. doi:10.1016/j.conbuildmat.2022.128137.
  • H. Jiang, L. Ren, X. Gu, J. Zheng, and L. Cui, Synergistic effect of activator nature and curing temperature on time-dependent rheological behavior of cemented paste backfill containing alkali-activated slag, Environ. Sci. Pollut. R. 30 (5) (2022), pp. 12857–12871. doi:10.1007/s11356-022-23053-1.
  • G. Xue, E. Yilmaz, G. Feng, and S. Cao, Analysis of tensile mechanical characteristics of fibre reinforced backfill through splitting tensile and three-point bending tests, Int. J. Min. Reclam. Env 36 (3) (2022), pp. 218–234. doi:10.1080/17480930.2021.2014693.
  • J. Li, S. Cao, and W. Song, Distribution development of pore/crack expansion and particle structure of cemented solid-waste composites based on CT and 3D reconstruction techniques, Constr. Build. Mater. 376 (2023), pp. 130966. doi:10.1016/j.conbuildmat.2023.130966.
  • L. Cui, S.P. Singalreddy, and G. Guo, Geomechanical behavior and properties of cemented paste backfill under passive interface loading and their influences on field-scale stability, Acta Geotech. 18 (7) (2023), pp. 3927–3945. doi:10.1007/s11440-023-01798-4.
  • K. Fang and L. Cui, Experimental investigation of fiber content and length on curing time-dependent mode-I fracture behavior and properties of cemented paste backfill and implication to engineering design, Fatigue Fract. Eng. Mater. Struct 45 (11) (2022), pp. 1–17. doi:10.1111/ffe.13819.
  • L. Cui and A. McAdie, Experimental study on evolutive fracture behavior and properties of sulfate-rich fiber-reinforced cemented paste backfill under pure mode-I, mode-II, and mode-III loadings, Int. J. Rock Mech. Min. Sci. 169 (2023), pp. 105434. doi:10.1016/j.ijrmms.2023.105434.
  • I.L.S. Libos and L. Cui, Effects of curing time, cement content, and saturation state on mode-I fracture toughness of cemented paste backfill, Eng. Fract. Mech 235 (2020), pp. 107174. doi:10.1016/j.engfracmech.2020.107174.
  • Z. Huang, S. Cao, and E. Yilmaz, Microstructure and mechanical behavior of cemented gold/tungsten mine tailings-crushed rock backfill: Effects of rock gradation and content, J. Environ. Manage. 339 (2023), pp. 117897. doi:10.1016/j.jenvman.2023.117897.
  • I.L.S. Libos, L. Cui, and X. Liu, Effect of curing temperature on time-dependent shear behavior and properties of polypropylene fiber-reinforced cemented paste backfill, Constr. Build. Mater. 311 (2021), pp. 125302. doi:10.1016/j.conbuildmat.2021.125302.
  • Z. Zhao, S. Cao, and E. Yilmaz, Effect of layer thickness on the flexural property and microstructure of 3D-printed rhomboid polymer-reinforced cemented tailing composites, Int. J. Miner. Metall. Mater. 30 (2) (2023), pp. 236–249. doi:10.1007/s12613-022-2557-6.
  • T. Kasap, E. Yilmaz, and M. Sari, Effects of mineral additives and age on microstructure evolution and durability properties of sand-reinforced cementitious mine backfills, Constr. Build. Mater. 352 (2022), pp. 129079. doi:10.1016/j.conbuildmat.2022.129079.
  • G. Zhu, W. Zhu, Z. Qi, B. Yan, H. Jiang, and C. Hou, One-partalkali-activated slag binder for cemented fine tailings backfill: Proportion optimization and properties evaluation, Environ. Sci. Pollut. Res. 29 (49) (2022), pp. 73865–73877. doi:10.1007/s11356-022-20331-w.
  • Y. Wang, Y. Cao, L. Cui, Z. Si, and H. Wang, Effect of external sulfate attack on the mechanical behavior of cemented paste backfill, Constr. Build. Mater. 263 (2020), pp. 120968. doi:10.1016/j.conbuildmat.2020.120968.
  • T. Kasap, E. Yilmaz, and M. Sari, Physico-chemical and micro-structural behavior of cemented mine backfill: Effect of pH in dam tailings, J. Environ. Manage. 314 (2022), pp. 115034. doi:10.1016/j.jenvman.2022.115034.
  • M. Sari, E. Yilmaz, T. Kasap, and N.U. Guner, Strength and microstructure evolution in cemented mine backfill with low and high pH pyritic tailings: Effect of mineral admixtures, Constr. Build. Mater. 328 (2022), pp. 127109. doi:10.1016/j.conbuildmat.2022.127109.
  • Q. Wang, J. Long, L. Xu, Z. Zhang, Y. Lv, Z. Yang, and K. Wu, Experimental and modelling study on the deterioration of stabilized soft soil subjected to sulfate attack, Constr. Build. Mater. 346 (2022), pp. 128436. doi:10.1016/j.conbuildmat.2022.128436.
  • B. Ran, K. Li, T. Fen-Chong, O. Omikrine-Metalssi, and P. Dangla, Spalling rate of concretes subject to combined leaching and external sulfate attack, Cem. Concr. Res. 162 (2022), pp. 106951. doi:10.1016/j.cemconres.2022.106951.
  • H. Jiang, M. Fall, E. Yilmaz, Y. Li, and L. Yang, Effect of mineral admixtures on flow properties of fresh cemented paste backfill: Assessment of time dependency and thixotropy, Pow. Technol. 372 (2020), pp. 258–266. doi:10.1016/j.powtec.2020.06.009.
  • K. Sotiriadis, R. Mróz, P. Mácová, A.S. Mazur, and A. Krajnc, Long-term sulfate resistance of synthesized cement systems with variable C3A/C4AF ratio at low temperature or ambient conditions: Insights into the crystalline and amorphous phase assemblage, Cem. Concr. Res. 160 (2022), pp. 106902. doi:10.1016/j.cemconres.2022.106902.
  • Z. Wang, Y. Wang, L. Cui, C. Bi, and A. Wu, Insight into the isothermal multiphysics processes in cemented paste backfill: Effect of curing time and cement-to-tailingsratio, Constr. Build. Mater. 325 (2022), pp. 126739. doi:10.1016/j.conbuildmat.2022.126739.
  • Y. Zhao, P. Wu, J. Qiu, Z. Guo, Y. Tian, X. Sun, and X. Gu, Recycling hazardous steel slag after thermal treatment to produce a binder for cemented paste backfill, Pow. Technol. 395 (2022), pp. 652–662. doi:10.1016/j.powtec.2021.10.008.
  • K. Fang and M. Fall, Shear characteristics of the rock/cemented tailings interface exposed to sulfate attack, Geotech. Res. 9, (2022). pp. 1–10.
  • Y. Liu, Y. Lu, C. Wang, B. Cui, H. Guo, H. Li, and Y. Guo, Effect of sulfate mine water on the durability of filling paste, Int. J. Green Energy 15 (13) (2018), pp. 864–873. doi:10.1080/15435075.2018.1529582.
  • Q. Dong, B. Liang, L. Jia, and L. Jiang, Effect of sulfide on the long-term strength of lead-zinc tailings cemented paste backfill, Constr. Build. Mater. 200 (2019), pp. 436–446. doi:10.1016/j.conbuildmat.2018.12.069.
  • L. Liu, J. Xin, C. Huan, C. Qi, W. Zhou, and K.-I. Song, Pore and strength characteristics of cemented paste backfill using sulphide tailings: Effect of sulphur content, Constr. Build. Mater. 237 (2020), pp. 117452. doi:10.1016/j.conbuildmat.2019.117452.
  • J. Zheng, X. Sun, L. Guo, S. Zhang, and J. Chen, Strength and hydration products of cemented paste backfill from sulphide-rich tailings using reactive MgO-activated slag as a binder, Constr. Build. Mater. 203 (2019), pp. 111–119. doi:10.1016/j.conbuildmat.2019.01.047.
  • K. Fang and M. Fall, Chemically induced changes in the shear behaviour of interface between rock and tailings backfill undergoing cementation, Rock Mech. Rock Eng 52 (9) (2019), pp. 3047–3062. doi:10.1007/s00603-019-01757-0.
  • J. Qiu, Z. Guo, L. Yang, H. Jiang, and Y. Zhao, Effect of tailings fineness on flow, strength, ultrasonic and microstructure characteristics of cemented paste backfill, Constr. Build. Mater. 263 (2020), pp. 120645. doi:10.1016/j.conbuildmat.2020.120645.
  • G. Ali, M. Fall, and I. Alainachi, Time- and temperature-dependence of rheological properties of cemented tailings backfill with sodium silicate, J. Mater. Civ. Eng. 33 (3) (2021), pp. 04020498. doi:10.1061/(ASCE)MT.1943-5533.0003605.
  • X. Shi, L. Brescia-Norambuena, C. Tavares, and Z. Grasley, Semicircular bending fracture test to evaluate fracture properties and ductility of cement mortar reinforced by scrap tire recycled steel fiber, Eng. Fract. Mech 236 (2020), pp. 107228. doi:10.1016/j.engfracmech.2020.107228.
  • M.R.M. Aliha, P. Jafari Haghighatpour, and A. Tavana, Application of asymmetric semi-circular bend test for determining mixed mode I + II fracture toughness of compacted soil material, Eng. Fract. Mech 262 (2022), pp. 108268. doi:10.1016/j.engfracmech.2022.108268.
  • M.R. Ayatollahi and M.R.M. Aliha, Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading, Comp. Mater. Sci 38 (4) (2007), pp. 660–670. doi:10.1016/j.commatsci.2006.04.008.
  • ASTM, Standard Test Methods for Laboratory Determination of Density and Unit Weight of Soil Specimens, West Conshohocken, PA: ASTM International, 2021.
  • Q. Fu, M. Bu, D. Li, W. Xu, J. He, and D. Niu, Resistance to sulfate attack and chemo-damage-transport model of sulfate ions for Tunnel Lining concrete under the action of loading and flowing groundwater, ACS Sustainable. Chem. Eng. 9 (42) (2021), pp. 14307–14326. doi:10.1021/acssuschemeng.1c05794.
  • B.D. Liu, W.J. Lv, L. Li, and P.F. Li, Effect of moisture content on static compressive elasticity modulus of concrete, Constr. Build. Mater. 69 (2014), pp. 133–142. doi:10.1016/j.conbuildmat.2014.06.094.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.