134
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Dynamic damage and energy dissipation of fiber-reinforced cemented tailings backfill under confinement

, , , &
Pages 826-855 | Received 19 Jun 2023, Accepted 19 Sep 2023, Published online: 25 Sep 2023

References

  • S. Yin, Y. Shao, A. Wu, H. Wang, X. Liu, and Y. Wang, A systematic review of paste technology in metal mines for cleaner production in China, J. Clean. Prod. 247 (2020), pp. 119590. doi:10.1016/j.jclepro.2019.119590.
  • M. Sheshpari, A review of underground mine backfilling methods with emphasis on cemented paste backfill, Electron. J. Geotech. Eng. 20 (2015), pp. 5183–5208.
  • E. Yilmaz, Advances in reducing large volumes of environmentally harmful mine waste rocks and tailings, Gospod. Surowcami. Miner 22 (2) (2011), pp. 89–112.
  • S. Azam and Q. Li, Tailings dam failures: A review of the last one hundred years, Geotech. News 28 (2010), pp. 50–54.
  • V. Hatje, R.M. Pedreira, C.E. de Rezende, C.A.F. Schettini, G.C. de Souza, D.C. Marin, and P.C. Hackspacher, The environmental impacts of one of the largest tailing dam failures worldwide, Sci Rep 7 (1) (2017), pp. 10706. doi:10.1038/s41598-017-11143-x.
  • M. Fall, M. Benzaazoua, and E.G. Saa, Mix proportioning of underground cemented tailings backfill, Tunn. Undergr. Space Technol. 23 (2008), pp. 80–90.
  • C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng. 144 (2019), pp. 106025. doi:10.1016/j.mineng.2019.106025.
  • Q. Chang, J. Chen, H. Zhou, and J. Bai, Implementation of paste backfill mining technology in Chinese coal mines, The Scientific World Journal 2014 (2014), pp. 1–8. doi:10.1155/2014/821025.
  • M. Fall, M. Benzaazoua, and S. Ouellet, Experimental characterization of the influence of tailings fineness and density on the quality of cemented paste backfill, Miner. Eng. 18 (1) (2005), pp. 41–44. doi:10.1016/j.mineng.2004.05.012.
  • S. Cao, G. Xue, and E. Yilmaz, Flexural behavior of fiber reinforced cemented tailings backfill under three-point bending, IEEE. Access 7 (2019), pp. 139317–139328. doi:10.1109/ACCESS.2019.2943479.
  • G. Xue, E. Yilmaz, G. Feng, and S. Cao, Analysis of tensile mechanical characteristics of fibre reinforced backfill through splitting tensile and three-point bending tests, Int. J. Min. Reclam. Environ. 36 (3) (2022), pp. 218–234. doi:10.1080/17480930.2021.2014693.
  • G. Xue, E. Yilmaz, W. Song, and S. Cao, Fiber length effect on strength properties of polypropylene fiber reinforced cemented tailings backfill specimens with different sizes, Constr. Build. Mater. 241 (2020), pp. 118113. doi:10.1016/j.conbuildmat.2020.118113.
  • Z. Huang, S. Cao, and E. Yilmaz, Investigation on the flexural strength, failure pattern and microstructural characteristics of combined fibers reinforced cemented tailings backfill, Constr. Build. Mater. 300 (2021), pp. 124005. doi:10.1016/j.conbuildmat.2021.124005.
  • G. Xue, E. Yilmaz, W. Song, and E. Yilmaz, Influence of fiber reinforcement on mechanical behavior and microstructural properties of cemented tailings backfill, Constr. Build. Mater. 213 (2019), pp. 275–285. doi:10.1016/j.conbuildmat.2019.04.080.
  • X. Song, Y. Hao, S. Wang, L. Zhang, H. Liu, F. Yong, Z. Dong, and Q. Yuan, Dynamic mechanical response and damage evolution of cemented tailings backfill with alkalized rice straw under SHPB cycle impact load, Constr. Build. Mater. 327 (2022), pp. 127009. doi:10.1016/j.conbuildmat.2022.127009.
  • S. Wang, X. Song, Q. Chen, X. Wang, M. Wei, Y. Ke, and Z. Luo, Mechanical properties of cemented tailings backfill containing alkalized rice straw of various lengths, J. Environ. Manage. 276 (2020), pp. 111124.
  • X. Chen, X. Shi, J. Zhou, Z. Yu, and P. Huang, Determination of mechanical, flowability, and microstructural properties of cemented tailings backfill containing rice straw, Constr. Build. Mater. 246 (2020), pp. 118520.
  • S. Wang, X. Song, M. Wei, W. Liu, X. Wang, Y. Ke, and T. Tao, Effect of the alkalized rice straw content on strength properties and microstructure of cemented tailings backfill, Front. Mater. 8 (2021), pp. 727925. doi:10.3389/fmats.2021.727925.
  • Y. Wang, J. Wu, D. Ma, H. Pu, Q. Yin, and W. Chen, Study on macro-meso mechanical properties of cemented tailings backfill with high fly ash content, Environ. Sci. Pollut. Res. 30 (2) (2023), pp. 2904–2917. doi:10.1007/s11356-022-22436-8.
  • W. Xu, Q. Li, and S. Haruna, The effect of calcium formate, sodium sulfate, and cement clinker on engineering properties of fly ash-based cemented tailings backfill, Adv. Mater. Sci. Eng 2019 (2019), pp. 1–12. doi:10.1155/2019/5370360.
  • J. Wang, J. Fu, W. Song, and Y. Zhang, Viscosity and strength properties of cemented tailings backfill with fly ash and its strength predicted, Minerals 11 (1) (2021), pp. 78. doi:10.3390/min11010078.
  • W. Xu, Y. Zhang, X. Zuo, and M. Hong, Time-dependent rheological and mechanical properties of silica fume modified cemented tailings backfill in low temperature environment, Cement And Concrete Composites 114 (2020), pp. 103804. doi:10.1016/j.cemconcomp.2020.103804.
  • A. Wang, S. Cao, and E. Yilmaz, Influence of types and contents of nano cellulose materials as reinforcement on stability performance of cementitious tailings backfill, Constr. Build. Mater. 344 (2022), pp. 128179. doi:10.1016/j.conbuildmat.2022.128179.
  • C. Zhang, J. Wang, W. Song, and J. Fu, Effect of waste glass powder on pore structure, mechanical properties and microstructure of cemented tailings backfill, Constr. Build. Mater. 365 (2023), pp. 130062. doi:10.1016/j.conbuildmat.2022.130062.
  • Z. Zhao, S. Cao, and E. Yilmaz, Effect of layer thickness on the flexural property and microstructure of 3D-printed rhomboid polymer-reinforced cemented tailing composites, Int. J. Miner. Metall. Mater. 30 (2) (2023), pp. 236–249. doi:10.1007/s12613-022-2557-6.
  • H. Zhang, S. Cao, and E. Yilmaz, Influence of 3D-printed polymer structures on dynamic splitting and crack propagation behavior of cementitious tailings backfill, Constr. Build. Mater. 343 (2022), pp. 128137. doi:10.1016/j.conbuildmat.2022.128137.
  • S. Qin, S. Cao, and E. Yilmaz, Employing U-shaped 3D printed polymer to improve flexural properties of cementitious tailings backfills, Constr. Build. Mater. 320 (2022), pp. 126296. doi:10.1016/j.conbuildmat.2021.126296.
  • Z. Huang, S. Cao, and S. Qin, Research on the mechanical properties of 3D printing polymer reinforced cemented tailings backfill under uniaxial compression, Geotech. Geol. Eng 40 (6) (2022), pp. 3255–3266. doi:10.1007/s10706-022-02091-z.
  • J. Li, S. Cao, E. Yilmaz, and Y. Liu, Compressive fatigue behavior and failure evolution of additive fiber-reinforced cemented tailings composites, Int. J. Miner. Metall. Mater. 29 (2) (2022), pp. 345–355. doi:10.1007/s12613-021-2351-x.
  • G. Xue and E. Yilmaz, Strength, acoustic, and fractal behavior of fiber reinforced cemented tailings backfill subjected to triaxial compression loads, Constr. Build. Mater. 338 (2022), pp. 127667. doi:10.1016/j.conbuildmat.2022.127667.
  • L. Cui and A. McAdie, Experimental study on evolutive fracture behavior and properties of sulfate-rich fiber-reinforced cemented paste backfill under pure mode-I, mode-II, and mode-III loadings, Int. J. Rock Mech. Min. Sci. 169 (2023), pp. 105434. doi:10.1016/j.ijrmms.2023.105434.
  • K. Fang and L. Cui, Experimental investigation of evolutive mode-I and mode-II fracture behavior of fiber-reinforced cemented paste backfill: Effect of curing temperature and curing time, Front. Struct. Civ. Eng 17 (2) (2023), pp. 256–270. doi:10.1007/s11709-022-0924-z.
  • K. Fang and L. Cui, Experimental investigation of fiber content and length on curing time‐dependent mode‐I fracture behavior and properties of cemented paste backfill and implication to engineering design, Fatigue Fract. Eng. Mater. Struct 45 (11) (2022), pp. 3302–3318. doi:10.1111/ffe.13819.
  • I.L.S. Libos, L. Cui, and X. Liu, Effect of curing temperature on time-dependent shear behavior and properties of polypropylene fiber-reinforced cemented paste backfill, Constr. Build. Mater. 311 (2021), pp. 125302. doi:10.1016/j.conbuildmat.2021.125302.
  • I.L.S. Libos and L. Cui, Time-and temperature-dependence of compressive and tensile behaviors of polypropylene fiber-reinforced cemented paste backfill, Front. Struct. Civ. Eng 15 (4) (2021), pp. 1025–1037. doi:10.1007/s11709-021-0741-9.
  • Y. Zhou, W. Shi, Y. Gao, J. Gao, and J. Ma, Experimental investigation on the dynamic mechanical response of polyethylene terephthalate fiber-reinforced polymer confined pre-flawed concrete under impact loading, J. Build. Eng. 57 (2022), pp. 104966. doi:10.1016/j.jobe.2022.104966.
  • S. Feng, Y. Zhou, Y. Wang, and M. Lei, Experimental research on the dynamic mechanical properties and damage characteristics of lightweight foamed concrete under impact loading, Int J Impact Eng 140 (2020), pp. 103558. doi:10.1016/j.ijimpeng.2020.103558.
  • S. Feng, Y. Zhou, and Q.M. Li, Damage behavior and energy absorption characteristics of foamed concrete under dynamic load, Constr. Build. Mater. 357 (2022), pp. 129340. doi:10.1016/j.conbuildmat.2022.129340.
  • S. Zou, L. Wang, J. Wen, X. Wu, and Y. Zhou, Experimental research on dynamic mechanical characteristics of layered composite coal-rock, Lat. Am. J. Solids Struct 18 (8) (2021), pp. 1–18. doi:10.1590/1679-78256721.
  • G. Xue, E. Yilmaz, G. Feng, S. Cao, and L. Sun, Reinforcement effect of polypropylene fiber on dynamic properties of cemented tailings backfill under SHPB impact loading, Constr. Build. Mater. 279 (2021), pp. 122417. doi:10.1016/j.conbuildmat.2021.122417.
  • D. Zheng, W. Song, S. Cao, J. Li, and L. Sun, Investigation on dynamical mechanics, energy dissipation, and microstructural characteristics of cemented tailings backfill under SHPB tests, Minerals 11 (5) (2021), pp. 542. doi:10.3390/min11050542.
  • Y. Hou, S. Yin, S. Yang, X. Chen, and H. Du, Mechanical properties, damage evolution and energy dissipation of cemented tailings backfill under impact loading, J. Build. Eng. 66 (2023), pp. 105912. doi:10.1016/j.jobe.2023.105912.
  • Y. Mu, X. Li, J. Wang, and Z. Leng, Research on the mechanical properties and energy consumption transfer law of cement tailings backfill under impact load, Sci. Adv. Mater. 13 (5) (2021), pp. 889–898. doi:10.1166/sam.2021.3974.
  • Y.X. Zhou, K. Xia, X.B. Li, H. Li, G.W. Ma, J. Zhao, Z.L. Zhou, and F. Dai, Suggested Methods for Determining the Dynamic Strength Parameters and Mode-I Fracture Toughness of Rock Materials. The ISRM Suggested Methods for Rock Characterization2007-2014: Testing and Monitoring. (2015), pp. 35–44. doi:10.1007/978-3-319-07713-0_3.
  • B.B. Mandelbrot, Self-affine fractals and fractal dimension, Phys. Scr. 32 (4) (1985), pp. 257. doi:10.1088/0031-8949/32/4/001.
  • K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons, 2004. doi:10.1002/0470013850.
  • A. Wang, S. Cao, and E. Yilmaz, Effect of height to diameter ratio on dynamic characteristics of cemented tailings backfills with fiber reinforcement through impact loading, Constr. Build. Mater. 322 (2022), pp. 126448. doi:10.1016/j.conbuildmat.2022.126448.
  • Y. Malecot, L. Zingg, M. Briffaut, and J. Baroth, Influence of free water on concrete triaxial behavior: The effect of porosity, Cem. Concr. Res. 120 (2019), pp. 207–216. doi:10.1016/j.cemconres.2019.03.010.
  • T. Wang, J. Xu, E. Bai, B. Ren, and S. Lu, Coupling effects of axial static pressure ratio and high temperature on dynamic mechanical properties and crushing fractal characteristics of concrete under static-dynamic coupled loads, J. Build. Eng. 59 (2022), pp. 105114. doi:10.1016/j.jobe.2022.105114.
  • K. Liu, C. Wu, X. Li, J. Liu, M. Tao, J. Fang, and S. Xu, The influences of cooling regimes on fire resistance of ultra-high performance concrete under static-dynamic coupled loads, J. Build. Eng. 44 (2021), pp. 103336. doi:10.1016/j.jobe.2021.103336.
  • W. Xu, Q. Li, and B. Liu, Coupled effect of curing temperature and age on compressive behavior, microstructure and ultrasonic properties of cemented tailings backfill, Constr. Build. Mater. 237 (2020), pp. 117738. doi:10.1016/j.conbuildmat.2019.117738.
  • H. Deng, Y. Liu, W. Zhang, S. Yu, and G. Tian, Study on the strength evolution characteristics of cemented tailings backfill from the perspective of porosity, Minerals 11 (1) (2021), pp. 82. doi:10.3390/min11010082.
  • Y. Zhao, C. Wang, L. Ning, H. Zhao, and J. Bi, Pore and fracture development in coal under stress conditions based on nuclear magnetic resonance and fractal theory, Fuel 309 (2022), pp. 122112. doi:10.1016/j.fuel.2021.122112.
  • H. Zhang, Y. Liu, H. Sun, and S. Wu, Transient dynamic behavior of polypropylene fiber reinforced mortar under compressive impact loading, Constr. Build. Mater. 111 (2016), pp. 30–42. doi:10.1016/j.conbuildmat.2016.02.049.
  • J.C. Li, L.F. Rong, H.B. Li, and S.N. Hong, An SHPB test study on stress wave energy attenuation in jointed rock masses, Rock Mech. Rock Eng 52 (2) (2019), pp. 403–420. doi:10.1007/s00603-018-1586-y.
  • X. Kong, D. He, X. Liu, E. Wang, S. Li, T. Liu, P. Ji, D. Deng, and S. Yang, Strain characteristics and energy dissipation laws of gas-bearing coal during impact fracture process, Energy 242 (2022), pp. 123028. doi:10.1016/j.energy.2021.123028.
  • J.A. Sanchidrián, P. Segarra, and L.M. López, Energy components in rock blasting, Int. J. Rock Mech. Min. Sci. 44 (1) (2007), pp. 130–147. doi:10.1016/j.ijrmms.2006.05.002.
  • R. Yang, Y. Xu, P. Chen, and J. Wang, Experimental study on dynamic mechanics and energy evolution of rubber concrete under cyclic impact loading and dynamic splitting tension, Constr. Build. Mater. 262 (2020), pp. 120071. doi:10.1016/j.conbuildmat.2020.120071.
  • Y. Zhou, S. Zou, J. Wen, and Y. Zhang, Study on the damage behavior and energy dissipation characteristics of basalt fiber concrete using SHPB device, Constr. Build. Mater. 368 (2023), pp. 130413. doi:10.1016/j.conbuildmat.2023.130413.
  • X. Wu, S. Wang, J. Yang, J. Zhao, and X. Chang, Damage characteristics and constitutive model of lightweight shale ceramsite concrete under static-dynamic loading, Eng Fract Mech 259 (2022), pp. 108137. doi:10.1016/j.engfracmech.2021.108137.
  • L. Liu, Y. Wang, and H. An, Fractal characteristics and energy dissipation of granite after high-temperature treatment based on SHPB experiment, Front. Earth Sci. 10 (2022), pp. 861847. doi:10.3389/feart.2022.861847.
  • J. Feng, E. Wang, X. Chen, and H. Ding, Energy dissipation rate: An indicator of coal deformation and failure under static and dynamic compressive loads, Int. J. Min. Sci. Technol. 28 (3) (2018), pp. 397–406. doi:10.1016/j.ijmst.2017.11.006.
  • Q. Ma and C. Gao, Effect of basalt fiber on the dynamic mechanical properties of cement-soil in SHPB test, J. Mater. Civ. Eng. 30 (8) (2018), pp. 04018185. doi:10.1061/(ASCE)MT.1943-5533.0002386.
  • Y. Luo, G. Wang, X. Li, T. Liu, A.K. Mandal, M. Xu, and K. Xu, Analysis of energy dissipation and crack evolution law of sandstone under impact load, Int. J. Rock Mech. Min. Sci. 132 (2020), pp. 104359. doi:10.1016/j.ijrmms.2020.104359.
  • S. Chen, H. Zhang, L. Wang, C. Yuan, X. Meng, G. Yang, Y. Shen, and Y. Lu, Experimental study on the impact disturbance damage of weakly cemented rock based on fractal characteristics and energy dissipation regulation, Theor. Appl. Fract. Mech 122 (2022), pp. 103665. doi:10.1016/j.tafmec.2022.103665.
  • Y. Miao, Y. Zhang, D. Wu, K. Li, X. Yan, and J. Lin, Rock fragmentation size distribution prediction and blasting parameter optimization based on the muck-pile model, Min. Metall. Explor. 38 (2) (2021), pp. 1071–1080. doi:10.1007/s42461-021-00384-0.
  • R. Yang, W. Li, and Z. Yue, Comparative study on dynamic mechanical properties and energy dissipation of rocks under impact loads, Shock Vib. 2020 (2020), pp. 1–15. doi:10.1155/2020/6665508.
  • S. Cao, E. Yilmaz, and W. Song, Fiber type effect on strength, toughness and microstructure of early age cemented tailings backfill, Constr. Build. Mater. 223 (2019), pp. 44–54. doi:10.1016/j.conbuildmat.2019.06.221.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.