169
Views
7
CrossRef citations to date
0
Altmetric
Original

A prospective study to evaluate the impact of 31P‐MRS to determinate mitochondrial dysfunction in skeletal muscle of ALS patients

, , , &
Pages 4-8 | Received 14 Oct 2005, Accepted 20 Apr 2006, Published online: 10 Jul 2009

References

  • Wong P. C., Rothstein J. D., Price D. L. The genetic and molecular mechanisms of motor neuron disease. Curr Opin Neurobiol 1998; 8: 791–9
  • Rosen D. R., Siddique T., Patterson D., Figlewicz D. A., Sapp P., Hentati A., et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362: 59–62
  • Wong P. C., Pardo C. A., Borchelt D. R., Lee M. K., Copeland N. G., Jenkins N. A., et al. An adverse property of a familial ALS‐linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 1995; 14: 1105–16
  • Gonatas N. K., Gonatas J. O., Stieber A. The involvement of the Golgi apparatus in the pathogenesis of amyotrophic lateral sclerosis, Alzheimer's disease, and ricin intoxication. Histochem Cell Biol 1998; 109: 591–600
  • Mourelatos Z., Gonatas N. K., Stieber A., Gurney M. E., Dal Canto M. C. The Golgi apparatus of spinal cord motor neurons in transgenic mice expressing mutant Cu/Zn superoxide dismutase becomes fragmented in early, preclinical stages of the disease. Proc Natl Acad Sci USA 1996; 93: 5472–7
  • Sasaki S., Iwata M. Ultrastructural study of synapses in the anterior horn neurons of patients with amyotrophic lateral sclerosis. Neurosci Lett 1996; 204: 53–6
  • Comi G. P., Bordoni A., Salani S., Franceschina L., Sciacco M., Prelle A., et al. Cytochrome c oxidase subunit I microdeletion in a patient with motor neuron disease. Ann Neurol 1998; 43: 110–6
  • Gabbianelli R., Ferri A., Rotilio G., Carri M. T. Aberrant copper chemistry as a major mediator of oxidative stress in a human cellular model of amyotrophic lateral sclerosis. J Neurochem 1999; 73: 1175–80
  • Richter C., Frei B. Ca2+ release from mitochondria induced by pro‐oxidants. Free Radic Biol Med 1988; 4: 365–75
  • Zhang Y., Marcillat O., Giulivi C., Ernster L., Davies K. J. The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J Biol Chem 1990; 265: 16330–6
  • Menzies F. M., Ince P. G., Shaw P. J. Mitochondrial involvement in amyotrophic lateral sclerosis. Neurochem Int 2002; 40: 543–51
  • Gurney M. E. Transgenic‐mouse model of amyotrophic lateral sclerosis. N Engl J Med 1994; 331: 1721–2
  • Kong J., Xu Z. Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J Neurosci 1998; 18: 3241–50
  • Borthwick G. M., Johnson M. A., Ince P. G., Shaw P. J., Turnbull D. M. Mitochondrial enzyme activity in amyotrophic lateral sclerosis: implications for the role of mitochondria in neuronal cell death. Ann Neurol 1999; 46: 787–90
  • Kaal E. C., Vlug A. S., Versleijen M. W., Kuilman M., Joosten E. A., Bar P. R. Chronic mitochondrial inhibition induces selective motor neuron death in vitro: a new model for amyotrophic lateral sclerosis. J Neurochem 2000; 74: 1158–65
  • Klivenyi P., Ferrante R. J., Matthews R. T., Bogdanov M. B., Klein A. M., Andreassen O. A., et al. Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat Med 1999; 5: 347–50
  • Nakano Y., Hirayama K., Terao K. Hepatic ultrastructural changes and liver dysfunction in amyotrophic lateral sclerosis. Arch Neurol 1987; 44: 103–6
  • Curti D., Malaspina A., Facchetti G., Camana C., Mazzini L., Tosca P., et al. Amyotrophic lateral sclerosis: oxidative energy metabolism and calcium homeostasis in peripheral blood lymphocytes. Neurology 1996; 47: 1060–4
  • Afifi A. K., Aleu F. P., Goodgold J., MacKay B. Ultrastructure of atrophic muscle in amyotrophic lateral sclerosis. Neurology 1966; 16: 475–81
  • Vielhaber S., Kunz D., Winkler K., Wiedemann F. R., Kirches E., Feistner H., et al. Mitochondrial DNA abnormalities in skeletal muscle of patients with sporadic amyotrophic lateral sclerosis. Brain 2000; 123: 1339–48
  • Vielhaber S., Winkler K., Kirches E., Kunz D., Buchner M., Feistner H., et al. Visualization of defective mitochondrial function in skeletal muscle fibres of patients with sporadic amyotrophic lateral sclerosis. J Neurol Sci 1999; 169: 133–9
  • Wiedemann F. R., Winkler K., Kuznetsov A. V., Bartels C., Vielhaber S., Feistner H., et al. Impairment of mitochondrial function in skeletal muscle of patients with amyotrophic lateral sclerosis. J Neurol Sci 1998; 156: 65–72
  • Krasnianski A., Deschauer M., Neudecker S., Gellerich F. N., Muller T., Schoser B. G., et al. Mitochondrial changes in skeletal muscle in amyotrophic lateral sclerosis and other neurogenic atrophies. Brain 2005; 128: 1870–6
  • World Federation of Neurology Research Group on Neuromuscular Diseases Subcommittee on Motor Neuron Disease. Airlie House guidelines. Therapeutic trials in amyotrophic lateral sclerosis. Airlie House ‘Therapeutic Trials in ALS’ Workshop Contributors. J Neurol Sci 1995; 129(Suppl:1–10)
  • Vorgerd M., Grehl T., Jager M., Müller K., Freitag G., Patzold T., et al. Creatine therapy in myophosphorylase deficiency (McArdle disease): a placebo‐controlled crossover trial. Arch Neurol 2000; 57: 956–63
  • Vorgerd M., Schöls L., Hardt C., Ristow M., Epplen J. T., Zange J. Mitochondrial impairment of human muscle in Friedreich ataxia in vivo. Neuromuscul Disord 2000; 10: 430–5
  • Saft C., Zange J., Andrich J., Müller K., Lindenberg K., Landwehrmeyer B., et al. Mitochondrial impairment in patients and asymptomatic mutation carriers of Huntington's disease. Mov Disord 2005; 20: 674–9
  • Andreassen O. A., Ferrante R. J., Klivenyi P., Klein A. M., Dedeoglu A., Albers D. S., et al. Transgenic ALS mice show increased vulnerability to the mitochondrial toxins MPTP and 3‐nitropropionic acid. Exp Neurol 2001; 168: 356–63
  • Bowling A. C., Schulz J. B., Brown R. H Jr., Beal M. F. Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J Neurochem 1993; 61: 2322–5
  • Wiedemann F. R., Manfredi G., Mawrin C., Beal M. F., Schon E. A. Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients. J Neurochem 2002; 80: 616–25
  • Echaniz‐Laguna A., Zoll J., Ribera F., Tranchant C., Warter J. M., Lonsdorfer J., et al. Mitochondrial respiratory chain function in skeletal muscle of ALS patients. Ann Neurol 2002; 52: 623–7
  • Leclerc N., Ribera F., Zoll J., Warter J. M., Poindron P., Lampert E., et al. Selective changes in mitochondria respiratory properties in oxidative or glycolytic muscle fibres isolated from G93A human SOD1 transgenic mice. Neuromuscul Disord 2001; 11: 722–7
  • Siciliano G., Pastorini E., Pasquali L., Manca M. L., Iudice A., Murri L. Impaired oxidative metabolism in exercising muscle from ALS patients. J Neurol Sci 2001; 191: 61–5
  • Beal M. F. Mitochondria and the pathogenesis of ALS. Brain 2000; 123: 1291–2
  • Radda G. K., Bore P. J., Gadian D. G., Ross B. D., Styles P., Taylor D. J., et al. 31P NMR examination of two patients with NADH‐CoQ reductase deficiency. Nature 1982; 295: 608–9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.