600
Views
52
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Differential expression of genes in amyotrophic lateral sclerosis revealed by profiling the post mortem cortex

, , , &
Pages 201-216 | Published online: 10 Jul 2009

References

  • Julien J. P. Amyotrophic lateral sclerosis: unfolding the toxicity of the misfolded. Cell 2001; 104: 581–91
  • Rowland L. P., Shneider N. A. Amyotrophic lateral sclerosis. N Engl J Med 2001; 344: 1688–1700
  • Brooks B. R., Miller R. G., Swash M., Munsat T. L. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 2000; 1: 293–9
  • Vonsattel J. P., Aizawa H., Ge P., DiFiglia M., McKee A. C., MacDonald M., et al. An improved approach to prepare human brains for research. J Neuropathol Exp Neurol 1995; 54: 42–56
  • Lowe J., Leigh N. Disorders of movement and system degeneration. Greenfield's Neuropathology, D Graham, P Lantos. Arnold, London 2002; Vol. II: 372–87, 7th edn
  • Cudkowicz M. E., McKenna‐Yasek D., Chen C., Hedley‐Whyte E. T., Brown R. H., Jr. Limited corticospinal tract involvement in amyotrophic lateral sclerosis subjects with the A4V mutation in the copper/zinc superoxide dismutase gene. Ann Neurol 1998; 43: 703–10
  • Irizarry R. A., Gautier L., Cope L. M. The analysis of Gene Expression Data: Methods and Software. Springer Verlag. 2003, Chapter 4 vol
  • Irizarry R. A., Hobbs B., Collin F., Beazer‐Barclay Y. D., Antonellis K. J., Scherf U., et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249–64
  • Bolstad B. M., Irizarry R. A., Astrand M., Speed T. P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003; 19: 185–93
  • Tusher V. G., Tibshirani R., Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci. USA 2001; 98: 5116–21
  • Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc B 1995; 57: 289–300
  • Dangond F., Hwang D., Camelo S., Pasinelli P., Frosch M. P., Stephanopoulos G., et al. Molecular signature of late‐stage human ALS revealed by expression profiling of post mortem spinal cord gray matter. Physiol Genomics 2004; 16: 229–39
  • Malaspina A., Kaushik N., de Belleroche J. Differential expression of 14 genes in amyotrophic lateral sclerosis spinal cord detected using gridded cDNA arrays. J Neurochem 2001; 77: 132–45
  • Ishigaki S., Niwa J., Ando Y., Yoshihara T., Sawada K., Doyu M., et al. Differentially expressed genes in sporadic amyotrophic lateral sclerosis spinal cords: screening by molecular indexing and subsequent cDNA microarray analysis. FEBS Lett 2002; 531: 354–8
  • Heath P. R., Shaw P. J. Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve 2002; 26: 438–58
  • Fray A. E., Ince P. G., Banner S. J., Milton I. D., Usher P. A., Cookson M. R., et al. The expression of the glial glutamate transporter protein EAAT2 in motor neuron disease: an immunohistochemical study. Eur J Neurosci 1998; 10: 2481–9
  • Roy J., Minotti S., Dong L., Figlewicz D. A., Durham H. D. Glutamate potentiates the toxicity of mutant Cu/Zn‐superoxide dismutase in motor neurons by postsynaptic calcium‐dependent mechanisms. J Neurosci 1998; 18: 9673–84
  • Rothstein J. D., van Kammen M., Levey A. I., Martin L. J., Kuncl R. W. Selective loss of glial glutamate transporter GLT‐1 in amyotrophic lateral sclerosis. Ann Neurol 1995; 38: 73–84
  • Lin C. L., Bristol L. A., Jin L., Dykes‐Hoberg M., Crawford T., Clawson L. Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron 1998; 20: 589–602
  • Arlotta P., Molyneaux B. J., Chen J., Inoue J., Kominami R., Macklis J. D. Neuronal subtype‐specific genes that control corticospinal motor neuron development in vivo. Neuron 2005; 45: 207–21
  • Baksh S., Spamer C., Heilmann C., Michalak M. Identification of the Zn2+ binding region in calreticulin. FEBS Lett 1995; 376: 53–7
  • Li Z., Stafford W. F., Bouvier M. The metal ion binding properties of calreticulin modulate its conformational flexibility and thermal stability. Biochemistry 2001; 40: 11193–201
  • Guo L., Groenendyk J., Papp S., Dabrowska M., Knoblach B., Kay C., et al. Identification of an N‐domain histidine essential for chaperone function in calreticulin. J Biol Chem 2003; 278: 50645–53
  • Rakhit R., Cunningham P., Furtos‐Matei A., Dahan S., Qi X. F., Crow J. P., et al. Oxidation‐induced misfolding and aggregation of superoxide dismutase and its implications for amyotrophic lateral sclerosis. J Biol Chem 2002; 277: 47551–6
  • Herold A., Bucurenci N., Mazilu E., Szegli G., Sidenco L., Baican I. Zinc aspartate in vivo and in vitro modulation of reactive oxygen species production by human neutrophils and monocytes. Roum Arch Microbiol Immunol 1993; 52: 101–8
  • Chen S. M., Young T. K. Effects of zinc deficiency on endogenous antioxidant enzymes and lipid peroxidation in glomerular cells of normal and five‐sixths nephrectomized rats. J Formos Med Assoc 1998; 97: 750–6
  • Carter J. E., Truong‐Tran A. Q., Grosser D., Ho L., Ruffin R. E., Zalewski P. D. Involvement of redox events in caspase activation in zinc‐depleted airway epithelial cells. Biochem Biophys Res Commun 2002; 297: 1062–70
  • Cao G. H., Chen J. D. Effects of dietary zinc on free radical generation, lipid peroxidation, and superoxide dismutase in trained mice. Arch Biochem Biophys 1991; 291: 147–53
  • Martyshkin D. V., Mirov S. B., Zhuang Y. X., Crow J. P., Ermilov V., Beckman J. S. Fluorescence assay for monitoring Zn‐deficient superoxide dismutase in vitro. Spectrochim Acta A Mol Biomol Spectrosc 2003; 59: 3165–75
  • Blessing H., Kraus S., Heindl P., Bal W., Hartwig A. Interaction of selenium compounds with zinc finger proteins involved in DNA repair. Eur J Biochem 2004; 271: 3190–9
  • Ermilova I. P., Ermilov V. B., Levy M., Ho E., Pereira C., Beckman J. S. Protection by dietary zinc in ALS mutant G93A SOD transgenic mice. Neurosci Lett 2005; 379: 42–6
  • Connor J. R., Wang X. S., Patton S. M., Menzies S. L., Troncoso J. C., Earley C. J., et al. Decreased transferrin receptor expression by neuromelanin cells in restless legs syndrome. Neurology 2004; 62: 1563–7
  • Mullner E. W., Neupert B., Kuhn L. C. A specific mRNA binding factor regulates the iron‐dependent stability of cytoplasmic transferrin receptor mRNA. Cell 1989; 58: 373–82
  • Yasui M., Ota K., Garruto R. M. Concentrations of zinc and iron in the brains of Guamanian patients with amyotrophic lateral sclerosis and Parkinsonism dementia. Neurotoxicology 1993; 14: 445–50
  • Kasarskis E. J., Tandon L., Lovell M. A., Ehmann W. D. Aluminum, calcium, and iron in the spinal cord of patients with sporadic amyotrophic lateral sclerosis using laser microprobe mass spectroscopy: a preliminary study. J Neurol Sci 1995; 130: 203–8
  • Smith M. A., Nunomura A., Zhu X., Takeda A., Perry G. Metabolic, metallic, and mitotic sources of oxidative stress in Alzheimer's disease. Antioxid Redox Signal 2000; 2: 413–20
  • Wang X. S., Lee S., Simmons Z., Boyer P., Scott K., Liu W., et al. Increased incidence of the Hfe mutation in amyotrophic lateral sclerosis and related cellular consequences. J Neurol Sci 2004; 227: 27–33
  • Urushitani M., Kurisu J., Tsukita K., Takahashi R. Proteasomal inhibition by misfolded mutant superoxide dismutase 1 induces selective motor neuron death in familial amyotrophic lateral sclerosis. J Neurochem 2002; 83: 1030–42
  • Hyun D. H., Lee M., Halliwell B., Jenner P. Proteasomal inhibition causes the formation of protein aggregates containing a wide range of proteins, including nitrated proteins. J Neurochem 2003; 86: 363–73
  • Kabashi E., Agar J. N., Taylor D. M., Minotti S., Durham H. D. Focal dysfunction of the proteasome: a pathogenic factor in a mouse model of amyotrophic lateral sclerosis. J Neurochem 2004; 89: 1325–35
  • Bardag‐Gorce F., French B. A., Lue Y. H., Nguyen V., Wan Y. J., French S. W. Mallory bodies formed in proteasome‐depleted hepatocytes: an immunohistochemical study. Exp Mol Pathol 2001; 70: 7–18
  • Leigh P. N., Anderton B. H., Dodson A., Gallo J. M., Swash M., Power D. M. Ubiquitin deposits in anterior horn cells in motor neuron disease. Neurosci Lett 1988; 93: 197–203
  • Jiang Y. M., Yamamoto M., Kobayashi Y., Yoshihara T., Liang Y., Terao S., et al. Gene expression profile of spinal motor neurons in sporadic amyotrophic lateral sclerosis. Ann Neurol 2005; 57: 236–51
  • Arendt T., Rodel L., Gartner U., Holzer M. Expression of the cyclin‐dependent kinase inhibitor p16 in Alzheimer's disease. Neuroreport 1996; 7: 3047–9
  • Vincent I., Rosado M., Davies P. Mitotic mechanisms in Alzheimer's disease?. J Cell Biol 1996; 132: 413–25
  • Vincent I., Jicha G., Rosado M., Dickson D. W. Aberrant expression of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer's disease brain. J Neurosci 1997; 17: 3588–98
  • McShea A., Harris P. L., Webster K. R., Wahl A. F., Smith M. A. Abnormal expression of the cell cycle regulators P16 and CDK4 in Alzheimer's disease. Am J Pathol 1997; 150: 1933–9
  • Busser J., Geldmacher D. S., Herrup K. Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer's disease brain. J Neurosci 1998; 18: 2801–7
  • Husseman J. W., Nochlin D., Vincent I. Mitotic activation: a convergent mechanism for a cohort of neurodegenerative diseases. Neurobiol Aging 2000; 21: 815–28
  • Ranganathan S., Scudiere S., Bowser R. Hyperphosphorylation of the retinoblastoma gene product and altered subcellular distribution of E2F‐1 during Alzheimer's disease and amyotrophic lateral sclerosis. J Alzheimers Dis 2001; 3: 377–85
  • Yang Y., Geldmacher D. S., Herrup K. DNA replication precedes neuronal cell death in Alzheimer's disease. J Neurosci 2001; 21: 2661–8
  • Cleveland D. W., Bruijn L. I., Wong P. C., Marszalek J. R., Vechio J. D., Lee M. K., et al. Mechanisms of selective motor neuron death in transgenic mouse models of motor neuron disease. Neurology 1996; 47: S54–61, discussion S52–61
  • Julien J. P., Beaulieu J. M. Cytoskeletal abnormalities in amyotrophic lateral sclerosis: beneficial or detrimental effects?. J Neurol Sci 2000; 180: 7–14
  • Hadano S., Hand C. K., Osuga H., Yanagisawa A., Otomo A., Devon R. S., et al. A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat Genet 2001; 29: 166–73
  • Yang Y., Hentati A., Deng H. X., Dabbagh O., Sasaki T., Hirano M., et al. The gene encoding alsin, a protein with three guanine‐nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat Genet 2001; 29: 160–5
  • Bar‐Sagi D., Hall A. Ras and Rho GTPases: a family reunion. Cell 2000; 103: 227–38
  • Mhatre M., Floyd R. A., Hensley K. Oxidative stress and neuroinflammation in Alzheimer's disease and amyotrophic lateral sclerosis: common links and potential therapeutic targets. J Alzheimers Dis 2004; 6: 147–57
  • Li M., Ona V. O., Guegan C., Chen M., Jackson‐Lewis V., Andrews L. J., et al. Functional role of caspase‐1 and caspase‐3 in an ALS transgenic mouse model. Science 2000; 288: 335–9
  • Shang X. Z., Zhu H., Lin K., Tu Z., Chen J., Nelson D. R., et al. Stabilized beta‐catenin promotes hepatocyte proliferation and inhibits TNFalpha‐induced apoptosis. Lab Invest 2004; 84: 332–41
  • Guegan C., Vila M., Rosoklija G., Hays A. P., Przedborski S., et al. Recruitment of the mitochondrial‐dependent apoptotic pathway in amyotrophic lateral sclerosis. J Neurosci 2001; 21: 6569–76
  • Albers D. S., Beal M. F. Mitochondrial dysfunction and oxidative stress in aging and neurodegenerative disease. J Neural Transm Suppl 2000; 59: 133–54
  • Ro L. S., Lai S. L., Chen C. M., Chen S. T. Deleted 4977‐bp mitochondrial DNA mutation is associated with sporadic amyotrophic lateral sclerosis: a hospital‐based case‐control study. Muscle Nerve 2003; 28: 737–43
  • Menzies F. M., Cookson M. R., Taylor R. W., Turnbull D. M., Chrzanowska‐Lightowlers Z. M., Dong L., et al. Mitochondrial dysfunction in a cell culture model of familial amyotrophic lateral sclerosis. Brain 2002; 125: 1522–33
  • Lukiw W. J. Gene expression profiling in fetal, aged, and Alzheimer hippocampus: a continuum of stress‐related signaling. Neurochem Res 2004; 29: 1287–97
  • Carmeliet P. Blood vessels and nerves: common signals, pathways and diseases. Nat Rev Genet 2003; 4: 710–20
  • Lambrechts D., Storkebaum E., Morimoto M., Del‐Favero J., Desmet F., Marklund S. L., et al. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motor neurons against ischemic death. Nat Genet 2003; 34: 383–94
  • Schratzberger P., Schratzberger G., Silver M., Curry C., Kearney M., Magner M., et al. Favorable effect of VEGF gene transfer on ischemic peripheral neuropathy. Nat Med 2000; 6: 405–13
  • Jin K. L., Mao X. O., Greenberg D. A. Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci. USA 2000; 97: 10242–7
  • Oosthuyse B., Moons L., Storkebaum E., Beck H., Nuyens D., Brusselmans K., et al. Deletion of the hypoxia‐response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 2001; 28: 131–8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.