134
Views
17
CrossRef citations to date
0
Altmetric
Review Article

Survey of ALS‐associated factors potentially promoting Ca2+ overload of motor neurons

Pages 260-265 | Received 24 Jan 2007, Accepted 11 Jun 2007, Published online: 10 Jul 2009

References

  • Lu Y. M., Yin H. Z., Chiang J., Weiss J. H. Ca2+‐permeable AMPA/kainate and NMDA channels: high rate of Ca2+ influx underlies potent induction of injury. J Neurosci 1996; 16: 5457–65
  • Appel S. H., Beers D., Siklos L., Engelhardt J. I., Mosier D. R. Calcium: the Darth Vader of ALS. Amyotroph Lateral Scler Other Motor Neuron Disord 2001; 2 (Suppl 1): S47–54
  • Arundine M., Tymianski M. Molecular mechanisms of calcium‐dependent neurodegeneration in excitotoxicity. Cell Calcium 2003; 34: 325–37
  • van Damme P., Braeken D., Callewaert G., Robberecht W., van den Bosch L. GluR2 deficiency accelerates motor neuron degeneration in a mouse model of amyotrophic lateral sclerosis. Neuropathol Exp Neurol 2005; 64: 605–12
  • van den Bosch L., van Damme P., Bogaert E., Robberecht W. The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis. Biochim Biophys Acta 2006; 1762: 1068–82
  • Choi D. W. Ionic dependence of glutamate neurotoxicity. J Neurosci 1987; 7: 369–79
  • Randall R. D., Thayer S. A. Glutamate‐induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J Neurosci 1992; 12: 1882–95
  • Siklos L., Engelhardt J., Harati Y., Smith R. G., Joo F., Appel S. H. Ultrastructural evidence for altered calcium in motor nerve terminals in amyotrophic lateral sclerosis. Ann Neurol 1996; 39: 203–16
  • Nicoll R. A., Alger B. E. Synaptic excitation may activate a calcium‐dependent potassium conductance in hippocampal pyramidal cells. Science 1981; 212: 957–9
  • Regan R. F., Choi D. W. Glutamate neurotoxicity in spinal cord cell culture. Neuroscience 1991; 43: 585–91
  • Choi D. W. Excitotoxic cell death. J Neurobiol 1992; 23: 1261–76
  • Estevez A. G., Stutzmann J. M., Barbeito L. Protective effect of riluzole on excitatory amino acid‐mediated neurotoxicity in motoneuron‐enriched cultures. Eur J Pharmacol 1995; 280: 47–53
  • van den Bosch L., Robberecht W. Different receptors mediate motor neuron death induced by short and long exposures to excitotoxicity. Brain Res Bull 2000; 53: 383–8
  • van den Bosch L., Vandenberghe W., Klaassen H., van Houtte E., Robberecht W. Ca2+‐permeable AMPA receptors and selective vulnerability of motor neurons. J Neurol Sci 2000; 180: 29–34
  • Olney J. W., Ho O. L., Rhee V. Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system. Exp Brain Res 1971; 14: 61–76
  • Olney J. W. Toxic effects of glutamate and related amino acids on the developing central nervous system. Heritable disorders of amino acid metabolism: patterns of clinical expression and genetic variation, W. L Nyhan. John Wiley & Sons, Inc, New York 1974; 501–12
  • Carriedo S. G., Yin H. Z., Weiss J. H. Motor neurons are selectively vulnerable to AMPA/kainate receptor‐mediated injury in vitro. J Neurosci 1996; 16: 4069–79
  • Urushitani M., Nakamizo T., Inoue R., Sawada H., Kihara T., Honda K., et al. N‐methyl‐D‐aspartate receptor‐mediated mitochondrial Ca2+ overload in acute excitotoxic motor neuron death: a mechanism distinct from chronic neurotoxicity after Ca2+ influx. J Neurosci Res 2001; 63: 377–87
  • Corona J. C., Tapia R. AMPA receptor activation, but not the accumulation of endogenous extracellular glutamate, induces paralysis and motor neuron death in rat spinal cord in vivo. J Neurochem 2004; 89: 988–97
  • Kalb R. G. Regulation of motor neuron dendrite growth by NMDA receptor activation. Development 1994; 120: 3063–71
  • Kalb R. G., Lidow M. S., Halsted M. J., Hockfield S. N‐methyl‐D‐aspartate receptors are transiently expressed in the developing spinal cord ventral horn. Proc Natl Acad Sci USA 1992; 89: 8502–6
  • Hori N., Tan Y., King M., Strominger N. L., Carpenter D. O. Differential actions and excitotoxicity of glutamate agonists on motoneurons in adult mouse cervical spinal cord slices. Brain Res 2002; 958: 434–8
  • Plaitakis A., Berl S., Yahr M. D. Abnormal glutamate metabolism in an adult‐onset degenerative neurological disorder. Science 1982; 216: 193–6
  • Plaitakis A., Caroscio J. T. Abnormal glutamate metabolism in amyotrophic lateral sclerosis. Ann Neurol 1987; 22: 575–9
  • Rothstein J. D., Tsai G., Kuncl R. W., Clawson L., Cornblath D. R., Drachman D. B., et al. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol 1990; 28: 18–25
  • Rothstein J. D., Kuncl R., Chaudhry V., Clawson L., Cornblath D. R., Coyle J. T., et al. Excitatory amino acids in amyotrophic lateral sclerosis: an update. Ann Neurol 1991; 30: 224–5
  • Iwasaki Y., Ikeda K., Kinoshita M. Plasma amino acid levels in patients with amyotrophic lateral sclerosis. J Neurol Sci 1992; 107: 219–22
  • Shaw P. J., Forrest V., Ince P. G., Richardson J. P., Wastell H. J. CSF and plasma amino acid levels in motor neuron disease: elevation of CSF glutamate in a subset of patients. Neurodegeneration 1995; 4: 209–16
  • Airapetian K. V., Zavalishin I. A., Nikitin S. S., Barkhatova V. P. Physiopathological and chemopathological mechanisms of central motor disorders in amyotrophic lateral sclerosis (in Russian). Zh Nevrol Psikhiatr Im SS Korsakova 2000; 7: 33–6
  • Spreux‐Varoquaux O., Bensimon G., Lacomblez L., Salachas F., Pradat P. F., Le Forestier N., et al. Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: a reappraisal using a new HPLC method with coulometric detection in a large cohort of patients. J Neurol Sci 2002; 193: 73–8
  • Couratier P., Hugon J., Sindou P., Vallat J. M., Dumas M. Cell culture evidence for neuronal degeneration in amyotrophic lateral sclerosis being linked to glutamate AMPA/kainate receptors. Lancet 1993; 341: 265–8
  • Tikka T. M., Vartiainen N. E., Goldsteins G., Oja S. S., Andersen P. M., Marklund S. L., et al. Minocycline prevents neurotoxicity induced by cerebrospinal fluid from patients with motor neurone disease. Brain 2002; 125: 722–31
  • Lawyer T Jr., Netsky M. G. Amyotrophic lateral sclerosis. A clinicoanatomic study of fifty‐three cases. AMA Arch Neurol Psychiatry 1953; 69: 171–92
  • Mannen T., Iwata M., Toyokura Y., Nagashima K. Preservation of a certain motoneurone group of the sacral cord in amyotrophic lateral sclerosis: its clinical significance. J Neurol Neurosurg Psychiatry 1977; 40: 464–9
  • van den Bosch L., Schwaller B., Vleminckx V., Meijers B., Stork S., Ruehlicke T., et al. Protective effect of parvalbumin on excitotoxic motorneuron death. Exp Neurol 2002; 174: 150–61
  • Alexianu M. E., Ho B. K., Mohamed A. H., La Bella V., Smith R. G., Appel S. H. The role of calcium‐binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann Neurol 1994; 36: 846–58
  • Reiner A., Medina L., Figueredo‐Cardenas G., Anfinson S. Brainstem motoneuron pools that are selectively resistant in amyotrophic lateral sclerosis are preferentially enriched in parvalbumin: evidence from monkey brainstem for a calcium‐mediated mechanism in sporadic ALS. Exp Neurol 1995; 131: 239–50
  • Palecek J., Lips M. B., Keller B. U. Calcium dynamics and buffering in motoneurones of the mouse spinal cord. J Physiol 1999; 520: 485–502
  • Vanselow B. K., Keller B. U. Calcium dynamics and buffering in oculomotor neurons from mouse that are particularly resistant during amyotrophic lateral sclerosis (ALS)‐related motoneurone disease. J Physiol 2000; 525: 433–45
  • Meldrum B., Garthwaite J. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci 1990; 11: 379–87
  • Rothstein J. D. Excitotoxic mechanisms in the pathogenesis of amyotrophic lateral sclerosis. Adv Neurol 1995; 68: 7–20
  • Heath P. R., Shaw P. J. Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve 2002; 26: 438–58
  • van Damme P., Dewil M., Robberecht W., van den Bosch L. Excitotoxicity and amyotrophic lateral sclerosis. Neurodegener Dis 2005; 2: 147–59
  • Plaitakis A., Smith J., Mandeli J., Yahr M. D. Pilot trial of branched‐chain amino acids in amyotrophic lateral sclerosis. Lancet 1988; 1: 1015–8
  • Cheramy A., Barbeito L., Godeheu G., Glowinski J. Riluzole inhibits the release of glutamate in the caudate nucleus of the cat in vivo. Neurosci Lett 1992; 147: 209–12
  • Martin D., Thompson M. A., Nadler J. V. The neuroprotective agent riluzole inhibits release of glutamate and aspartate from slices of hippocampal area CA1. Eur J Pharmacol 1993; 250: 473–6
  • Niebroj‐Dobosz I., Janik P., Kwiecinski H. Effect of riluzole on serum amino acids in patients with amyotrophic lateral sclerosis. Acta Neurol Scand 2002; 106: 39–43
  • Bensimon G., Lacomblez L., Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med 1994; 330: 585–91
  • Rowland L. P. Controversies about amyotrophic lateral sclerosis. Neurologia 1996; 11 (Suppl 5): 72–4
  • Mitchell D. J., O'Brien M. R., Joshi M. Audit of outcomes in motor neuron disease (MND) patients treated with riluzole. Amyotroph Lateral Scler Other Motor Neuron Disord 2006; 7: 67–71
  • Pomara N., Singh R., Deptula D., Chou J. C., Schwartz M. B., LeWitt P. A. Glutamate and other CSF amino acids in Alzheimer's disease. Am J Psychiatry 1992; 149: 251–4
  • Csernansky J. G., Bardgett M. E., Sheline Y. I., Morris J. C., Olney J. W. CSF excitatory amino acids and severity of illness in Alzheimer's disease. Neurology 1996; 46: 1715–20
  • Jimenez‐Jimenez F. J., Molina J. A., Gomez P., Vargas C., de Bustos F., Benito‐Leon J., et al. Neurotransmitter amino acids in cerebrospinal fluid of patients with Alzheimer's disease. J Neural Transm 1998; 105: 269–77
  • Perry T. L., Hansen S. What excitotoxin kills striatal neurons in Huntington's disease? Clues from neurochemical studies. Neurology 1990; 40: 20–4
  • Peres M. F., Zukerman E., Senne Soares C. A., Alonso E. O., Santos B. F., Faulhaber M. H. Cerebrospinal fluid glutamate levels in chronic migraine. Cephalalgia 2004; 24: 735–9
  • Perry T. L., Krieger C., Hansen S., Eisen A. Amyotrophic lateral sclerosis: amino acid levels in plasma and cerebrospinal fluid. Ann Neurol 1990; 28: 12–7
  • Katakura N., Chandler S. H. An iontophoretic analysis of the pharmacological mechanisms responsible for trigeminal motoneuronal discharge during masticatory‐like activity in the guinea pig. J Neurophysiol 1990; 63: 356–69
  • Yokota T., Yoshino A., Inaba A., Saito Y. Double cortical stimulation in amyotrophic lateral sclerosis. Neurol Neurosurg Psychiatry 1996; 61: 596–600
  • Ziemann U., Winter M., Reimers C. D., Reimers K., Tergau F., Paulus W. Impaired motor cortex inhibition in patients with amyotrophic lateral sclerosis. Evidence from paired transcranial magnetic stimulation. Neurology 1997; 49: 1292–8
  • Hanajima R., Ugawa Y. Impaired motor cortex inhibition in patients with ALS: evidence from paired transcranial magnetic stimulation. Neurology 1998; 51: 1771–2
  • Turner M. R., Osei‐Lah A. D., Hammers A., Al‐Chalabi A., Shaw C. E., Andersen P. M., et al. Abnormal cortical excitability in sporadic but not homozygous D90A SOD1 ALS. J Neurol Neurosurg Psychiatry 2005; 76: 1279–85
  • Eisen A., Weber M. Neurophysiological evaluation of cortical function in the early diagnosis of ALS. Amyotroph Lateral Scler Other Motor Neuron Disord 2000; 1 (Suppl 1): S47–51
  • Dingledine R., Borges K., Bowie D., Traynelis S. F. The glutamate receptor ion channels. Pharmacol Rev 1999; 51: 7–61
  • Kato H., Narita M., Miyatake M., Yajima Y., Suzuki T. Role of neuronal NR2B subunit‐containing NMDA receptor‐mediated Ca2+ influx and astrocytic activation in cultured mouse cortical neurons and astrocytes. Synapse 2006; 59: 10–7
  • Fuller P. I., Reddrop C., Rodger J., Bellingham M. C., Phillips J. K. Differential expression of the NMDA NR2B receptor subunit in motoneuron populations susceptible and resistant to amyotrophic lateral sclerosis. Neurosci Lett 2006; 399: 157–61
  • De Belleroche J., Recordati A., Rose F. C. Elevated levels of amino acids in the CSF of motor neuron disease patients. Neurochem Pathol 1984; 2: 1–6
  • Ziegler M. G., Brooks B. R., Lake C. R., Wood J. H., Enna S. J. Norepinephrine and gamma‐aminobutyric acid in amyotrophic lateral sclerosis. Neurology 1980; 30: 98–101
  • Barkhatova V. P., Zavalishin I. A., Kostiuk A. V., Demina E. G., Moskvitina T. A. Neurotransmitter changes in amyotrophic lateral sclerosis (in Russian). Zh Nevropatol Psikhiatr Im S S Korsakova 1996; 4: 78–85
  • Niebroj‐Dobosz I., Janik P. Amino acids acting as transmitters in amyotrophic lateral sclerosis (ALS). Acta Neurol Scand 1999; 100: 6–11
  • Sandyk R. Serotonergic mechanisms in amyotrophic lateral sclerosis. Int J Neurosci 2006; 116: 775–826
  • Akaike N., Kaneda M., Hori N., Krishtal O. A. Blockade of N‐methyl‐D‐aspartate response in enzyme‐treated rat hippocampal neurons. Neurosci Lett 1988; 87: 75–9
  • Lovinger D. M., Weight F. F. Glutamate induces a depolarization of adult rat dorsal root ganglion neurons that is mediated predominantly by NMDA receptors. Neurosci Lett 1988; 94: 314–20
  • Woodward J. J., Brown L., Gonzales R. A. Modulation of ethanol‐induced inhibition of N‐methyl‐D‐aspartate‐stimulated neurotransmitter release by glycine. Alcohol Alcohol Suppl 1991; 1: 177–80
  • Thomson A. M., Walker V. E., Flynn D. M. Glycine enhances NMDA‐receptor mediated synaptic potentials in neocortical slices. Nature 1989; 338: 422–4
  • Li J., McRoberts J. A., Nie J., Ennes H. S., Mayer E. A. Electrophysiological characterization of N‐methyl‐D‐aspartate receptors in rat dorsal root ganglia neurons. Pain 2004; 109: 443–52
  • Larson A. A., Beitz A. J. Glycine potentiates strychnine‐induced convulsions: role of NMDA receptors. J Neurosci 1988; 8: 3822–6
  • Stanton P. K., Mody I., Heinemann U. A role for N‐methyl‐D‐aspartate receptors in norepinephrine‐induced long‐lasting potentiation in the dentate gyrus. Exp Brain Res 1989; 77: 517–30
  • van Damme P., Callewaert G., Eggermont J., Robberecht W., van ven Bosch L. Chloride influx aggravates Ca2+‐dependent AMPA receptor‐mediated motoneuron death. J Neurosci 2003; 23: 4942–50
  • Takebayashi M., Kagaya A., Hayashi T., Motohashi N., Yamawaki S. Gamma‐aminobutyric acid increases intracellular Ca2+ concentration in cultured cortical neurons: role of Cl‐ transport. Eur J Pharmacol 1996; 297: 137–43
  • Yuste R., Katz L. C. Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters. Neuron 1991; 6: 333–44
  • Foehring R. C. Serotonin modulates N‐ and P‐type calcium currents in neocortical pyramidal neurons via a membrane‐delimited pathway. J Neurophysiol 1996; 75: 648–59
  • Penington N. J., Kelly J. S. Serotonin receptor activation reduces calcium current in an acutely dissociated adult central neuron. Neuron 1990; 4: 751–8
  • Waldemar G., Vorstrup S., Jensen T. S., Johnsen A., Boysen G. Focal reductions of cerebral blood flow in amyotrophic lateral sclerosis: a [99mTc]‐d,l‐HMPAO SPECT study. J Neurol Sci 1992; 107: 19–28
  • Kew J. J., Leigh P. N., Playford E. D., Passingham R. E., Goldstein L. H., Frackowiak R. S., et al. Cortical function in amyotrophic lateral sclerosis. A positron emission tomography study. Brain 1993; 116: 655–80
  • Tanaka M., Ichiba T., Kondo S., Hirai S., Okamoto K. Cerebral blood flow and oxygen metabolism in patients with progressive dementia and amyotrophic lateral sclerosis. Neurol Res 2003; 25: 351–6
  • Kristian T., Siesjo B. K. Calcium in ischaemic cell death. Stroke 1998; 29: 705–18
  • Arundine M., Tymianski M. Molecular mechanisms of glutamate‐dependent neurodegeneration in ischaemia and traumatic brain injury. Cell Mol Life Sci 2004; 61: 657–68

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.