586
Views
5
CrossRef citations to date
0
Altmetric
Review

Efficacy of corrective spinal orthoses on gait and energy consumption in scoliosis subjects: a literature review

, , , &
Pages 324-332 | Received 19 Dec 2015, Accepted 30 Apr 2016, Published online: 13 Jun 2016

References

  • Weinstein SL, Dolan LA, Cheng JC, et al. Adolescent idiopathic scoliosis. Lancet. 2008;371:1527–1537.
  • Lonstein JE. Scoliosis: surgical versus nonsurgical treatment. Clin Orthop Relat Res. 2006;443:248–259.
  • Negrini S, Grivas TB, Kotwicki T, et al. Why do we treat adolescent idiopathic scoliosis? What we want to obtain and to avoid for our patients? SOSORT 2005 Consensus paper. Scoliosis. 2006;1:4.
  • Pehrsson K, Danielsson A, Nachemson A. Pulmonary function in adolescent idiopathic scoliosis: a 25 year follow up after surgery or start of brace treatment. Thorax. 2001;56:388–393.
  • Danielsson AJ, Nachemson AL. Radiologic findings and curve progression 22 years after treatment for adolescent idiopathic scoliosis: comparison of brace and surgical treatment with matching control group of straight individuals. Spine. 2001;26:516–525.
  • Danielsson AJ, Nachemson AL. Back pain and function 22 years after brace treatment for adolescent idiopathic scoliosis: a case–control study-part I. Spine. 2003;28:2078–2085.
  • Mahaudens P, Banse X, Mousny M, et al. Gait in adolescent idiopathic scoliosis: kinematics and electromyographic analysis. Eur Spine J. 2009;18:512–521.
  • Mayo NE, Goldberg MS, Poitras B, et al. The Ste–Justine Adolescent Idiopathic Scoliosis Cohort Study. Part III: back pain. Spine. 1994;19:1573–1581.
  • MacKinnon CD, Winter DA. Control of whole body balance in the frontal plane during human walking. J Biomech. 1993;26:633–644.
  • Winter DA. Biomechanics and motor control of human gait: normal, elderly and pathological. Ontario: University of Waterloo Press; 1991.
  • Danielsson AJ, Romberg K, Nachemson AL. Spinal range of motion, muscle endurance, and back pain and function at least 20 years after fusion or brace treatment for adolescent idiopathic scoliosis: a case–control study. Spine. 2006;31:275–283.
  • Lenke LG, Engsberg JR, Ross SA, et al. Prospective dynamic functional evaluation of gait and spinal balance following spinal fusion in adolescent idiopathic scoliosis. Spine. 2001;26:E330–E3E7.
  • Schwender JD, Denis F. Coronal plane imbalance in adolescent idiopathic scoliosis with left lumbar curves exceeding 40: the role of the lumbosacral hemicurve. Spine. 2000;25:2358–2363.
  • Thorstensson A, Nilsson J, Carlson H, et al. Trunk movements in human locomotion. Acta Physiol Scand. 1984;121:9–22.
  • Mahaudens P, Thonnard J-L, Detrembleur C. Influence of structural pelvic disorders during standing and walking in adolescents with idiopathic scoliosis. Spine J. 2005;5:427–433.
  • Mallau S, Bollini G, Jouve J-L, et al. Locomotor skills and balance strategies in adolescents idiopathic scoliosis. Spine. 2007;32:E14–E22.
  • Giakas G, Baltzopoulos V, Dangerfield PH, et al. Comparison of gait patterns between healthy and scoliotic patients using time and frequency domain analysis of ground reaction forces. Spine. 1996;21:2235–2242.
  • Mahaudens P, Detrembleur C, Mousny M, et al. Gait in adolescent idiopathic scoliosis: energy cost analysis. Eur Spine J. 2009;18:1160–1168.
  • Negrini S, Minozzi S, Bettany‐Saltikov J, et al. Braces for idiopathic scoliosis in adolescents. Cochrane Library. 2010:CD006850.
  • Katz DE, Durrani A. Factors that influence outcome in bracing large curves in patients with adolescent idiopathic scoliosis. Spine. 2001;26:2354–2361.
  • Brox JI, Lange JE, Gunderson RB, et al. Good brace compliance reduced curve progression and surgical rates in patients with idiopathic scoliosis. Eur Spine J. 2012;21:1957–1963.
  • Richards BS, Bernstein RM, D’Amato CR, et al. Standardization of criteria for adolescent idiopathic scoliosis brace studies: SRS Committee on Bracing and Nonoperative Management. Spine. 2005;30:2068–2075.
  • Takemitsu M, Bowen JR, Rahman T, et al. Compliance monitoring of brace treatment for patients with idiopathic scoliosis. Spine. 2004;29:2070–2074.
  • Konz R, Fatone S, Gard S. Effect of restricted spinal motion on gait. J Rehabil Res Dev. 2006;43:161.
  • Wong M, Cheng C, Ng B, et al. The effect of rigid versus flexible spinal orthosis on the gait pattern of patients with adolescent idiopathic scoliosis. Gait Posture. 2008;27:189–195.
  • Wang T, Xu J-G, Zeng B-f. Selective fusion in adolescent idiopathic scoliosis. Chin Med J. 2008;121:1456.
  • Wang T, Zeng B, Xu J, et al. Radiographic evaluation of selective anterior thoracolumbar or lumbar fusion for adolescent idiopathic scoliosis. Eur Spine J. 2008;17:1012–1018.
  • Schizas C, Kramers-de Quervain I, Stüssi E, et al. Gait asymmetries in patients with idiopathic scoliosis using vertical forces measurement only. Eur Spine J. 1998;7:95–98.
  • Mahaudens P, Banse X, Detrembleur C. Effects of short-term brace wearing on the pendulum-like mechanism of walking in healthy subjects. Gait Posture. 2008;28:703–707.
  • Mahaudens P, Banse X, Mousny M, et al. Very short-term effect of brace wearing on gait in adolescent idiopathic scoliosis girls. Eur Spine J. 2013;22:2399–2406.
  • Perry J, Davids JR. Gait analysis: normal and pathological function. J Pediatr Orthop. 1992;12:815.
  • Yang JH, Suh S-W, Sung PS, et al. Asymmetrical gait in adolescents with idiopathic scoliosis. Eur Spine J. 2013;22:2407–2413.
  • Kramers-de Quervain IA, Müller R, Stacoff A, et al. Gait analysis in patients with idiopathic scoliosis. Eur Spine J. 2004;13:449–456.
  • Prince F, Charbonneau M, Lemire G, et al. Comparison of locomotor pattern between idiopathic scoliosis patients and control subjects. Scoliosis. 2010;5:1.
  • Chow DH, Kwok ML, Au-Yang AC, et al. The effect of load carriage on the gait of girls with adolescent idiopathic scoliosis and normal controls. Med Eng Phys. 2006;28:430–437.
  • Mahaudens P, Raison M, Banse X, et al. Effect of long-term orthotic treatment on gait biomechanics in adolescent idiopathic scoliosis. Spine J. 2014;14:1510–1519.
  • Kaviani Brojeni M, Karimi MT, Ebrahimi A. The effects of Milwaukee orthosis on gait parameters in a Scoliotic subject. J Res Rehabil Sci. 2013;8:1403–1412.
  • Karimi MT, Kavyani M, Etemadifar MR. Gait analysis in adolescent idiopathic scoliosis walking with Boston brace. Scoliosis. 2014;9:O24.
  • Paolucci T, Morone G, Di Cesare A, et al. Effect of Cheneau brace on postural balance in adolescent idiopathic scoliosis: a pilot study. Eur J Phys Rehabil Med. 2013;49:649–657.
  • Chen P-Q, Wang J-L, Tsuang Y-H, et al. The postural stability control and gait pattern of idiopathic scoliosis adolescents. Clin Biomech (Bristol, Avon). 1998;13:S52–SS8.
  • Park Y-S,Woo B-H, Kim J-M, et al. editors. Comparison of gait analysis between adolescent idiopathic scoliosis patients and age matched controls. ISBS – conference proceedings archive; 2012.
  • Syczewska M, Łukaszewska A, Górak B, et al. Changes in gait pattern in patients with scoliosis. Med Rehabil. 2006;10:12–21.
  • Yazji M, Raison M, Aubin C-É, et al. Are the medio-lateral joint forces in the lower limbs different between scoliotic and healthy subjects during gait? Scoliosis. 2015;10:O30.
  • Bruyneel A-V, Chavet P, Bollini G, et al. Lateral steps reveal adaptive biomechanical strategies in adolescent idiopathic scoliosis. Ann réadapt méd phys 2008;51: 630–641
  • Bruyneel A-V, Chavet P, Bollini G, et al. Gait initiation reflects the adaptive biomechanical strategies of adolescents with idiopathic scoliosis. Ann Phys Rehabil Med. 2010;53:372–386.
  • Mohammad Taghi Karimi MKB. The analysis of the length and produced force by some trunk muscles of a scoliotic patient using Open-SIMM software during walking with Milwaukee orthosis – a case report. J Res Rehabil Sci. 2014;9:1344–1352.
  • Kaviani BM, Karimi M. Etemadifar MR. Evaluation of the energy expenditure during walking in adolescent idiopathic scoliosis patients. J Paramed Sci Rehabil 2015;4:59–65.
  • Pajak J, Durmala J, Bugala-Szpak J. Exercise capacity of adolescent girls with idiopathic scoliosis; analyzed in 6 Minute Walking Test (6MWT), with and without Chêneau's brace-pilot studies. Scoliosis. 2013;8:O18.
  • Stoquart G, Detrembleur C, Lejeune T. Effect of speed on kinematic, kinetic, electromyographic and energetic reference values during treadmill walking. Neurophysiol Clin. 2008;38:105–116.
  • Waters R, Barnes G, Husserel T, et al. Comparable energy expenditure after arthrodesis of the hip and ankle. J Bone Joint Surg Am. 1988;70:1032–1037.
  • Illi SK, Held U, Frank I, et al. Effect of respiratory muscle training on exercise performance in healthy individuals: a systematic review and meta-analysis. Sports Med. 2012;42:707–724.
  • Della Croce U, Riley PO, Lelas JL, et al. A refined view of the determinants of gait. Gait Posture. 2001;14:79–84.
  • Stoquart GG, Detrembleur C, Palumbo S, et al. Effect of botulinum toxin injection in the rectus femoris on stiff-knee gait in people with stroke: a prospective observational study. Arch Phys Med Rehabil. 2008;89:56–61.
  • Inman VT, Ralston HJ, Todd F. Human walking. Baltimore, London: Williams & Wilkins; 1981.
  • Karimi MT, Kavyani M, Etemadifar MR. Evaluation the immediate effects of bracing on kinetic parameters in adolescent idiopathic scoliosis patients. Scoliosis. 2014;9:O58.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.