3,238
Views
19
CrossRef citations to date
0
Altmetric
Original Research

Kinect4FOG: monitoring and improving mobility in people with Parkinson’s using a novel system incorporating the Microsoft Kinect v2

ORCID Icon, &
Pages 566-573 | Received 28 Dec 2017, Accepted 18 Apr 2018, Published online: 23 May 2018

References

  • Yarnall A, Archibald N, Brun D. Parkinson’s disease. Lancet. 2015;386:896–912. [Internet].
  • Dirkx MF, den Ouden HEM, Aarts E, et al. Dopamine controls Parkinson’s tremor by inhibiting the cerebellar thalamus. Brain. 2017;140:721–734.
  • Young WR, Shreve L, Quinn EJ, et al. Auditory cueing in Parkinson’s patients with freezing of gait. What matters most: action-relevance or cue-continuity? Neuropsychologia. 2016;87:54–62.
  • Pickering RM, Grimbergen YAM, Rigney U, et al. A meta-analysis of six prospective studies of falling in Parkinson’s disease. Mov Disord. 2007;22:1892–1900.
  • Johnson L, James I, Rodrigues J, et al. Clinical and posturographic correlates of falling in Parkinson’s disease. Mov Disord. 2013;28:1250–1256.
  • Bloem BR, Hausdorff JM, Visser JE, et al. Falls and freezing of gait in Parkinson’s disease: a review of two interconnected, episodic phenomena. Mov Disord. 2004;19:871–884.
  • Okuma Y. Freezing of gait in Parkinson’s disease. J Neurol. 2006;253:27–32.
  • Beck EN, Ehgoetz Martens KA, Almeida QJ. Freezing of gait in Parkinson’s disease: an overload problem? PLoS One. 2015;10:e0144986.
  • Nutt JG, Bloem BR, Giladi N, et al. Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol. 2011;10:734–744.
  • University of Rochester. Laser pointer helps Parkinson’s patients take next step. [Internet]. 1999 [cited 2017 May 24]. Available from: https://www.rochester.edu/news/show.php?id =1175
  • Rochester L, Hetherington V, Jones D, et al. The effect of external rhythmic cues (auditory and visual) on walking during a functional task in homes of people with Parkinson’s disease. Arch Phys Med Rehabil. 2005;86:999–1006.
  • Khan AA. Detecting freezing of Gait in Parkinson’s disease for automatic application of rhythmic auditory stimuli. Berkshire, UK: University of Reading; 2013.
  • Suteerawattananon M, Morris GS, Etnyre BR, et al. Effects of visual and auditory cues on gait in individuals with Parkinson’s disease. J Neurol Sci. 2004;219:63–69.
  • Rubinstein TC, Giladi N, Hausdorff JM. The power of cueing to circumvent dopamine deficits: a review of physical therapy treatment of gait disturbances in Parkinson’s disease. Mov Disord. 2002;17:1148–1160.
  • Carrel AJ. The effects of cueing on walking stability in people with Parkinson’s disease [dissertation]. Iowa, USA: Iowa State University; 2007.
  • Jiang Y, Norman KE. Effects of visual and auditory cues on gait initiation in people with Parkinson’s disease. Clin Rehabil. 2006;20:36–45.
  • Velik R. Effect of on-demand cueing on freezing of Gait in Parkinson’s patients. Int J Med Pharm Sci Eng. 2012;6:10–15.
  • Azulay JP, Mesure S, Blin O. Influence of visual cues on gait in Parkinson’s disease: contribution to attention or sensory dependence? J Neurol Sci. 2006;248:192–195.
  • Donovan S, Lim C, Diaz N, et al. Laserlight cues for gait freezing in Parkinson’s disease: an open-label study. Park Relat Disord. 2011;17:240–245.
  • Dvorsky BP, Elgelid S, Chau CW. The Effectiveness of utilizing a combination of external visual and auditory cues as a Gait training strategy in a pharmaceutically untreated patient with Parkinson’s disease: a case report. Phys Occup Ther Geriatr. 2011;29:320–326.
  • Griffin HJ, Greenlaw R, Limousin P, et al. The effect of real and virtual visual cues on walking in Parkinson’s disease. J Neurol. 2011;258:991–1000.
  • Velik R, Hoffmann U, Zabaleta H, et al. The effect of visual cues on the number and duration of freezing episodes in Parkinson’s patients. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:4656–4659.
  • Azulay J, Mesure S, Amblard B, et al. Visual control of locomotion in Parkinson’s disease. Analysis. 1999;122:111–120.
  • Kaminsky TA, Dudgeon BJ, Billingsley FF, et al. Virtual cues and functional mobility of people with Parkinson’s disease: a single-subject pilot study. J Rehabil Res Dev. 2007;44:437–448.
  • McAuley JH, Daly PM, Curtis CR. A preliminary investigation of a novel design of visual cue glasses that aid gait in Parkinson’s disease. Clin Rehabil. 2009;23:687–695.
  • Lebold CA, Almeida QJ. An evaluation of mechanisms underlying the influence of step cues on gait in Parkinson’s disease. J Clin Neurosci. 2011;18:798–802.
  • Takač B, Chen W, Rauterberg M. Toward a domestic system to assist people with Parkinson’s. SPIE Newsroom. 2013;19:871–884.
  • Zhao Y, Ramesberger S, Fietzek UM, et al. A novel wearable laser device to regulate stride length in Parkinson’s disease. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:5895–5898.
  • Lewis GN, Byblow WD, Walt SE. Stride length regulation in Parkinson’s disease: the use of extrinsic, visual cues. Brain. 2000;123:2077–2090.
  • Kang JM, Yoo T, Kim HC. A wrist-worn integrated health monitoring instrument with a tele-reporting device for telemedicine and telecare. IEEE Trans Instrum Meas. 2006;55:1655–1661.
  • Nyan MN, Tay FEH, Murugasu E. A wearable system for pre-impact fall detection. J Biomech. 2008;41:3475–3481.
  • Pierleoni P, Belli A, Palma L, et al. A high reliability wearable device for elderly fall detection. IEEE Sensors J. 2015;15:4544–4553.
  • Nguyen TT, Cho MC, Lee TS. Automatic fall detection using wearable biomedical signal measurement terminal. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:5203–5206.
  • Stone E, Skubic M. Fall detection in homes of older adults using the Microsoft Kinect. IEEE J Biomed Health Inform. 2015;19:290–301.
  • Mastorakis G, Makris D. Fall detection system using Kinect’s infrared sensor. J Real-Time Image Proc. 2012;9:635–646.
  • Gasparrini S, Cippitelli E, Spinsante S, et al. A depth-based fall detection system using a Kinect sensor. Sensors. 2014;14:2756–2775.
  • Rusko M, Korauš A. Faculty of materials science and technology in Trnava. Mater Sci Technol. 2010;22:157–162.
  • Amini A, Banitsas K, Hosseinzadeh S. A new technique for foot-off and foot contact detection in a gait cycle based on the knee joint angle using Microsoft Kinect v2. 2017 IEEE EMBS International Conference on Biomedical & Health Informatics; 16–19 February 2017. Orlando: IEEE; 2017. p. 153–156.
  • Bigy AAM, Banitsas K, Badii A, et al. Recognition of postures and freezing of gait in Parkinson’s disease patients using Microsoft Kinect sensor. 7th Annual International IEEE EMBS Conference on Neural Engineering; 22 April 2015; Montpellier, France: EMBS. 2015. p. 731–734.
  • Amini A, Banitsas K, Cosmas J. A comparison between heuristic and machine learning techniques in fall detection using Kinect v2. 2016 IEEE International Symposium on Medical Measurements and Applications; 15–18 May 2016. Benevento, Italy: IEEE; 2016. p. 1–6.