1,137
Views
35
CrossRef citations to date
0
Altmetric
Review Articles

Robot-assisted ankle rehabilitation: a review

, ORCID Icon & ORCID Icon
Pages 394-408 | Received 24 Feb 2018, Accepted 31 Jan 2019, Published online: 11 Mar 2019

References

  • Jiacong W. Rehabilitation of ankle and foot. Chin J Rehabil Theory Practice. 2008;12:1197–1198.
  • Khalid YM, Gouwanda D, Parasuraman S. A review on the mechanical design elements of ankle rehabilitation robot. Proc Inst Mech Eng H. 2015;229:452–463.
  • Syrseloudis CE, Emiris IZ. A parallel robot for ankle rehabilitationn, evaluation and its design specifications. In Bioinformatics and bioengineering, 2008. 8th IEEE International Conference. San Diego, CA. 2008. p. 1–6.
  • Siegler S, Chen J, Schneck C. The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joints part i: kinematics. J Biomech Eng. 1988;110:364–373.
  • S. C. O. Institute. Anatomy of the ankle [cited 2016 Apr 4]. Available from: http://www.scoi.com/ specialties/anatomy-ankle.
  • Takemura H, Onodera T, Ming D, et al. Design and control of a wearable Stewart platform-type ankle-foot assistive device. Int J Adv Robot Syst 2012;9:1–7.
  • Malosio M, Negri SP, Pedrocchi N, et al. A spherical parallel three degrees-of-freedom robot for ankle-foot neuro-rehabilitation. In: Engineering in medicine and biology society. 2012 Annual International Conference of the IEEE; Athens, Greece. 2012. p. 3356–3359.
  • Footcare N. Motions of the foot and ankle. 2008 [cited 2016 Apr 25]. Available from: http://www.northcoastfootcare.com/pages/Biomechanics.html.
  • Manter JT. Movements of the subtalar and transverse tarsal joints. Anat Rec. 1941;80:397–410.
  • Barnett C, Napier J. The axis of rotation at the ankle joint in man; its influence upon the form of the talus and the mobility of the fibula. J Anat. 1952;86:1–9.
  • Wang C, Fang Y, Guo S, et al. Design and kinematical performance analysis of a 3-rus/rrr redundantly actuated parallel mechanism for ankle rehabilitation. J Mechanisms Robotics. 2013;5:041003.
  • Hicks J. The mechanics of the foot. I. The joints. J Anat. 1953;87:345–357.
  • Gholami F, Pàmies-Vilà R, Kövecses J, et al. Effects of foot modelling on the human ankle kinematics and dynamics. Mech Mach Theory. 2015;93:175–184.
  • Dul J, Johnson G. A kinematic model of the human ankle. J Biomed Eng. 1985;7:137–143.
  • Lundberg A, Svensson O, Nemeth G, et al. The axis of rotation of the ankle joint. J Bone Joint Surg Br. 1989;71:94–99.
  • Lundberg A, Svensson O. The axes of rotation of the talocalcaneal and talonavicular joints. The Foot. 1993;3:65–70.
  • Leardini A, O’Connor JJ, Catani F, et al. Kinematics of the human ankle complex in passive flexion; a single degree of freedom system. J Biomech. 1999;32:111–118.
  • Sammarco GJ. Kinematics of the ankle: a hinged axis model. Foot Ankle. 1993;14:113.
  • Takahashi K-Z, Lewek M-D, Sawicki G-S. A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study. J NeuroEng Rehab. 2015;12:1–13.
  • Cobb G. Walking Motion. 1935. https://patents.google.com/patent/US2010482.
  • Dollar AM, Herr H. Lower extremity exoskeletons and active orthoses: challenges and state of the art. IEEE Trans Robot. 2008;24:144–158.
  • Blaya JA, Herr H. Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans Neural Syst Rehabil Eng. 2004;12:24–31.
  • Huo W, Mohammed S, Moreno JC, et al. Lower limb wearable robots for assistance and rehabilitation: a state of the art. IEEE Syst J. 2016;10:1068–1081.
  • Boehler AW, Hollander KW, Sugar TG, et al. Design, implementation and test results of a robust control method for a powered ankle foot orthosis (AFO). Robotics and automation, 2008. IEEE International Conference; Pasadena, CA, United States; 2008. p. 2025–2030.
  • Chou C-P, Hannaford B. Static and dynamic characteristics of McKibben pneumatic artificial muscles. Robotics and automation. 1994 IEEE International Conference; San Diego, CA, USA; 1994. p. 281–286.
  • Gordon KE, Sawicki GS, Ferris DP. Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis. J Biomech. 2006;39:1832–1841.
  • Ferris DP, Gordon KE, Sawicki GS, et al. An improved powered ankle-foot orthosis using proportional myoelectric control. Gait Posture. 2006;23:425–428.
  • Bharadwaj K, Sugar TG, Koeneman JB, et al. Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation. J Biomech Eng. 2005;127:1009–1013.
  • Saito Y, Kikuchi K, Negoto H, et al. Development of externally powered lower limb orthosis with bilateral-servo actuator. Rehabilitation Robotics, 2005. ICORR 2005. 9th International Conference on IEEE; Chicago, IL, USA; 2005. p. 394–399.
  • Andersen JB, Sinkjaer T. An actuator system for investigating electrophysiological and biomechanical features around the human ankle joint during gait. IEEE Trans Rehab Eng. 1995;3:299–306.
  • Ekkelenkamp R, Veneman J, van der Kooij H. Lopes: a lower extremity powered exoskeleton, in: robotics and automation. 2007 IEEE International Conference on, IEEE; Roma, Italy; 2007. p. 3132–3133.
  • Awad L-N, Bae J, O’Donnell K, et.al. A soft robotic exosuit improves walking in patients after stroke. Sci Transl Med. 2017;9:1–12.
  • Zanotto D, Stegall P, Agrawal SK. Alex III: A novel robotic platform with 12 dofs for human gait training, in: robotics and automation. 2013 IEEE International Conference; Karlsruhe, Germany; 2013. p. 3914–3919.
  • Jackson RW, Collins SH. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons. J Appl Physiol. 2015;119:01133.
  • Tsuge BY, McCarthy JM. An adjustable single degree-of-freedom system to guide natural walking movement for rehabilitation. J Med Devices. 2016;10:044501.
  • Cardoso R, Silva MT, Jaime IbáñezJosé González-Vargas, José María Azorín, Metin Akay, José Luis Pons. Design, analysis and simulation of a novel device for locomotion support. In: Converging clinical and engineering research on neurorehabilitation II. Springer; 2017. p. 833–837.
  • M, Moltedo T, Bacek K, Langlois, et al. A compliant lightweight and adaptable active ankle foot orthosis for robotic rehabilitation. In: Wearable robotics: challenges and trends. Springer; 2017. p. 45–49.
  • Tefertiller C, Pharo B, Evans N, et al. Efficacy of rehabilitation robotics for walking training in neurological disorders: a review. JRRD. 2011;48:387–416.
  • Zhang M, Davies TC, Xie S. Effectiveness of robot-assisted therapy on ankle rehabilitation: a systematic review. J Neuroeng Rehab. 2013;10:1–16.
  • Miller LE, Zimmermann AK, Herbert WG. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis. Medical Devices (Auckland, NZ). 2016;9:455–466.
  • B. Inc., Ekso GT. La Innovación Se Encuentra Con La Neurorehabilitación (in spanish) [cited 2016 Dec 1]. Available from: http://eksobionics.com/eksohealth/products/.
  • Roy A, Krebs HI, Williams DJ, et al. Robot-aided neurorehabilitation: a novel robot for ankle rehabilitation. IEEE Trans Robot. 2009;25:569–582.
  • Freivogel S, Mehrholz J, Husak-Sotomayor T, et al. Gait training with the newly developed 'Lokohelp'-system is feasible for nonambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain Injury. 2008;22:625–632.
  • Motorika. Reoambulator. [cited 2016 Dec 1]. Available from: http://motorika.com/reoambulator/.
  • H. Kuettel D. III. Pulley optimization for a walking-engine-actuated active ankle-foot orthosis. J Young Invest. 2016;31:32–38.
  • Ren Y, Xu T, Wang L, et al. Develop a wearable ankle robot for in-bed acute stroke rehabilitation. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA.
  • Agrawal A, Sangwan V, Banala SK, et al. Design of a novel two degree-of-freedom ankle-foot orthosis. J Mech Design. 2007;129:113–1143.
  • AG H. Lokomat research [cited 2016 Dec 13]. Available from: https://knowledge.hocoma.com/research/lokomat.html.
  • Schmidt H. Hapticwalker-a novel haptic device for walking simulation. Proc EuroHaptics, Tokyo, Japan; 2004;66–67.
  • Dasgupta B, Mruthyunjaya TS. Stewart platform manipulator: a review. Mech Mach Theory. 2000;35:15–40.
  • Girone MJ, Burdea GC, Bouzit M. The "Rutgers ankle" orthopaedic rehabilitation interface. Proc ASME Haptics Symp. 1999;67:305–312.
  • Dai JS, Zhao T, Nester C. Sprained ankle physiotherapy based mechanism synthesis and stiffness analysis of a robotic rehabilitation device. Auton Robots. 2004;16:207–218.
  • Selles RW, Li X, Lin F, et al. Feedback controlled and programmed stretching of the ankle plantar flexors and dorsiflexors in stroke: effects of a 4-week intervention program. Arch Phys Med Rehabil. 2005;86:2330–2336.
  • Liu G, Gao J, Yue H, et al. Design and kinematics analysis of parallel robots for ankle rehabilitation. IEEE International Conference on Intelligent Robots and Systems, Beijing, China; 2006. p. 253–258.
  • Yoon J, Ryu J, Lim KB. Reconfigurable ankle rehabilitation robot for various exercises. J Robot Syst. 2006;22:15–33.
  • Lee K-M, Shah DK. Kinematic analysis of a three-degrees-of-freedom in parallel actuated manipulator. IEEE J Robot Automat. 1988;4:354–360.
  • Homma K, Usuba M. Development of ankle dorsiflexion/plantarflexion exercise device with passive mechanical joint. Rehabilitation robotics. IEEE 10th International Conference, 2007, Noordwijk, Netherlands; 2007. p. 292–297.
  • Tsoi YH, Xie SQ. Design and control of a parallel robot for ankle rehabilitation. 2008 15th International Conference on Mechatronics and Machine Vision in Practice, Auckland, New Zealand; 2008. p. 515–520.
  • Lin CCK, Ju MS, Chen SM, et al. A specialized robot for ankle rehabilitation and evaluation. J Med Biol Eng. 2008;28:79–86.
  • Cordo P, Lutsep H, Cordo L, et al. Assisted movement with enhanced sensation (AMES): coupling motor and sensory to remediate motor deficits in chronic stroke patients. Neurorehabil Neural Repair. 2009;23:67–77.
  • Saglia JA, Tsagarakis NG, Dai JS, et al. A high performance 2 DOF over-actuated parallel mechanism for ankle rehabilitation. Proc IEEE Int Conf Robot Automat, Kobe, Japan; 2009;2180–2186.
  • Saglia JA, Tsagarakis NG, Dai JS, et al. Control strategies for patient-assisted training using the ankle rehabilitation robot (ARBOT). IEEE/ASME Trans Mechatron. 2013;18:1799–1808.,
  • Jamwal PK, Xie S, Aw KC. Kinematic design optimization of a parallel ankle rehabilitation robot using modified genetic algorithm. Robot Auton Syst. 2009;57:1018–1027.
  • Ding Y, Sivak M, Weinberg B, et al. Nuvabat: North-eastern university virtual ankle and balance trainer. 2010 IEEE Haptics Symp, Waltham, MA, USA; 2010; 509–514.
  • Guzmán Valdivia HC, Carrera Escobedo JL, Blanco Ortega A, et al. Diseño y control de un sistema interactivo para la rehabilitación de tobillo: tobibot. Sociedad Mexicana de Ingeniería Mecánica. 2014;5:255–264.
  • Sung E, Slocum AH, Ma R, et al. Design of an ankle rehabilitation device using compliant mechanisms. J Med Devices. 2011;5:01100–01101.
  • Zhou Z, Zhou Y, Wang N, et al. A proprioceptive neuromuscular facilitation integrated robotic ankle-foot system for post stroke rehabilitation. Robot Auton Syst. 2015;73:111–122.
  • Kinetec. Kinetec cpm [cited 2016 Dec 1]. Available from: http://www.kinetec.fr/en/kinetecselection/cpm-continuous-passive-motion/ankle.html.
  • Chattgroup. Optiflex ankle CPM [cited 2016 Dec 13]. Available from: http://www.braceshop.com/productcart/pc/OptiFlex-Ankle-CPM- 346p1341.html.
  • J. Systems. Jace ankle A330 CPM [cited 2016 Dec 13]. Available from: http://www.jacesystems.com/products/ankle.htm.
  • Biodex. Biodex system 4 [cited 2016 Dec 13]. Available from: http://www.biodex.com/physicalmedicine/products/dynamometers/system-4-pro.
  • Gosselin CM, Hamel J-F. The agile eye: a high-performance three degree-of-freedom camera-orienting device. Robotics and Automation, 1994 IEEE International Conference, San Diego, CA, USA; 1994. p. 781–786.
  • Simnofske M, Kumar S, Bongardt B, et al. Active ankle-an almost spherical parallel mechanism. ISR 2016: 47st International Symposium on Robotics, Singapore; 2016. p. 1–6.
  • Monfaredi R, Evans S, Coley C, et al. Robotically assisted ankle rehabilitation for paediatrics. Biomedical Robotics and Biomechatronics, 2016 6th IEEE International Conference; Singapore; 2016. p. 612–616.
  • Alcocer W, Vela L, Blanco A, Gonzalez J, Oliver M. Major trends in the development of ankle rehabilitation devices. Dyna J. 2012;79:44–55.
  • Satici AC, Erdogan A, Patoglu V. Design of a reconfigurable ankle rehabilitation robot and its use for the estimation of the ankle impedance. Rehabilitation robotics. 2009 IEEE International Conference, Kyoto, Japan; 2009. p. 257–264.
  • Wu YN, Hwang M, Ren Y, et al. Combined passive stretching and active movement rehabilitation of lower-limb impairments in children with cerebral palsy using a portable robot. Neurorehabil Neural Repair. 2011;25:378–385.
  • Krebs HI, Palazzolo JJ, Dipietro L, et al. Rehabilitation robotics: performance-based progressive robot-assisted therapy. Auton Robots. 2003;15:7–20.
  • Hogan N, Krebs HI, Rohrer B, et al. Motions or muscles? Some behavioral factors underlying robotic assistance of motor recovery. J Rehabil Res Dev. 2006;43:605–618.,
  • Mazzoleni S, Turchetti G, Palla I, et al. Acceptability of robotic technology in neuro-rehabilitation: Preliminary results on chronic stroke patients. Comput Methods Programs Biomed. 2014;116:116–122.
  • Haring K.S., Silvera-Tawil D., Watanabe K., Velonaki M. (2016) The Influence of Robot Appearance and Interactive Ability in HRI: A Cross-Cultural Study. In: Agah A., Cabibihan JJ., Howard A., Salichs M., He H. (eds) Social Robotics. ICSR 2016. Lecture Notes in Computer Science, vol 9979. Springer, Cham.
  • Lee H, Kang H, Kim M-G, et al. The impact of robot design approach on product evaluation, product usefulness and purchase intention. Adv Sci Technol Lett. 2016;129:93–97.
  • M, Zhang G, Zhu A, Nandakumar, et al. 2001 Stewart virtual-reality tracking game for use in robot-assisted ankle rehabilitation. Mechatronic and Embedded Systems and Applications, 2014 IEEE/ASME 10th International Conference, Senigallia, Italy; 2014, p. 1–4.
  • Dascal J, Reid M, IsHak WW, et al. Virtual reality and medical inpatients: a systematic review of randomized, controlled trials. Innov Clin Neurosci. 2017;14:14–21.
  • Rogante M, Grigioni M, Cordella D, et al. Ten years of telerehabilitation: a literature overview of technologies and clinical applications. NeuroRehabilitation. 2010;27:287–304.
  • Cesarini D, Buonocunto P, Marinoni M, et al. A tele-rehabilitation framework for lower-limb functional recovery. Proceedings of the 9th International Conference on Body Area Networks, London, United Kingdom; 2014; 54–61.
  • Kato N, Tanaka T, Sugihara S, et al. Development and evaluation of a new tele-rehabilitation system based on VR technology using multisensory feedback for patients with stroke. J Phys Ther Sci. 2015;27:3185–3190.
  • Meng W, Liu Q, Zhou Z, et al. Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics. 2015;31:132–145.
  • Marchal-Crespo L, Reinkensmeyer DJ. Review of control strategies for robotic movement training after neurologic injury. J Neuroeng Rehabil. 2009;20:6–20.
  • Jamwal PK, Hussain S, Xie SQ. Review on design and control aspects of ankle rehabilitation robots. Disabil Rehabil Assist Technol. 2015;10:93–101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.