1,281
Views
33
CrossRef citations to date
0
Altmetric
Review Article

A review of cable-driven rehabilitation devices

&
Pages 885-897 | Received 26 Feb 2019, Accepted 04 Jun 2019, Published online: 09 Jul 2019

References

  • Babaiasl M, Mahdioun SH, Jaryani P, et al. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Disabil Rehabil Assist Technol. 2016;11:263–280.
  • Maciejasz P, Eschweiler J, Gerlach-Hahn K, et al. A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil. 2014;11:3.
  • Barreca S, Wolf SL, Fasoli S, et al. Treatment interventions for the paretic upper limb of stroke survivors: a critical review. Neurorehabil Neural Repair. 2003;17:220–226.
  • Dobkin BH. Strategies for stroke rehabilitation. Lancet Neurol. 2004;3:528–536.
  • Fazekas G, Horvath M, Troznai T, et al. Robot-mediated upper limb physiotherapy for patients with spastic hemiparesis: a preliminary study. J Rehabil Med. 2007;39:580–582.
  • Prange GB, Jannink MJA, Groothuis-Oudshoorn CGM, et al. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev. 2006;43:171–184.
  • Kwakkel G, Kollen BJ, Krebs HI. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008;22:111–121.
  • Niyetkaliyev AS, Hussain S, Ghayesh MH, et al. Review on design and control aspects of robotic shoulder rehabilitation orthoses. IEEE Trans Human-Mach Syst. 2017;47:1134–1145.
  • Lo HS, Xie SQ. Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects. Med Eng Phys. 2012;34:261–268.
  • Basteris A, Nijenhuis SM, Stienen AHA, et al. Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. J NeuroEngineering Rehabil. 2014;11:111.
  • Loureiro RV, Harwin WS, Nagai K, et al. Advances in upper limb stroke rehabilitation: a technology push. Med Biol Eng Comput. 2011;49:1103
  • Gopura R, Bandara DV, Kiguchi K, et al. Developments in hardware systems of active upper-limb exoskeleton robots: A review. Rob. Auton. Syst. 2016;75:203–220.
  • Proietti T, Crocher V, Roby-Brami A, et al. Upper-limb robotic exoskeletons for neurorehabilitation: a review on control strategies. IEEE Rev Biomed Eng. 2016;9:4–14.
  • Masiero S, Armani M, Rosati G. Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: focused review and results of new randomized controlled trial. J Rehabil Res Dev. 2011;48:355.
  • Norouzi-Gheidari N, Archambault PS, Fung J. Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: systematic review and meta-analysis of the literature. J Rehabil Res Dev. 2012;49:479.
  • Morales R, Badesa FJ, García-Aracil N, et al. Pneumatic robotic systems for upper limb rehabilitation. Med Biol Eng Comput. 2011;49:1145.
  • Jarrassé N, Proietti T, Crocher V, et al. Robotic exoskeletons: a perspective for the rehabilitation of arm coordination in stroke patients. Front Hum Neurosci. 2014;8:947.
  • Jamwal PK, Hussain S, Xie SQ. Review on design and control aspects of ankle rehabilitation robots. Disabil Rehabil Assist Technol. 2013;10:1–9.
  • Chen G, Chan CK, Guo Z, et al. A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy. Crit Rev Biomed Eng. 2013;41:343–363.
  • Yan T, Cempini M, Oddo CM, et al. Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Rob Auton Syst. 2015;64:120–136.
  • Pennycott A, Wyss D, Vallery H, et al. Towards more effective robotic gait training for stroke rehabilitation: a review. J Neuroeng Rehabil. 2012;9:65.
  • Belda-Lois J-M, Mena-del Horno S, Bermejo-Bosch I, et al. Rehabilitation of gait after stroke: a review towards a top-down approach. J Neuroeng Rehabil. 2011;8:66.
  • Sánchez E, Díaz I, Gil JJ. Lower-limb robotic rehabilitation: literature review and challenges. J Robot. 2011;2011:1–11.
  • Hussain S. State-of-the-art robotic gait rehabilitation orthoses: design and control aspects. NeuroRehabilitation. 2014;35:701–709.
  • Huo W, Mohammed S, Moreno JC, et al. Lower limb wearable robots for assistance and rehabilitation: a state of the art. IEEE Syst. J. 2016;10:1068–1081.
  • Heo P, Gu GM, Lee S, et al. Current hand exoskeleton technologies for rehabilitation and assistive engineering. Int J Precis Eng Manuf. 2012;13:807–824.
  • Lum PS, Godfrey SB, Brokaw EB, et al. Robotic approaches for rehabilitation of hand function after stroke. Am J Phys Med Rehabil. 2012;91:S242–S254.
  • Balasubramanian S, Klein J, Burdet E. Robot-assisted rehabilitation of hand function. Curr Opin Neurol. 2010;23:661–670.
  • Marchal-Crespo L, Reinkensmeyer DJ. Review of control strategies for robotic movement training after neurologic injury. J. Neuroeng. Rehabil. 2009;6:20.
  • Cao J, Xie SQ, Das R, et al. Control strategies for effective robot assisted gait rehabilitation: the state of art and future prospects. Med Eng Phys. 2014;36:1555–1566.
  • Du J, Agrawal SK. Dynamic modeling of cable-driven parallel manipulators with distributed mass flexible cables. J Vib Acoust. 2015;137:21020.
  • Mayhew D, Bachrach B, Rymer WZ, et al. Development of the MACARM - a novel cable robot for upper limb neurorehabilitation. 9th International Conference on Rehabilitation Robotics. 28 June–1 July 2005; Chicago, IL, USA, 299–302.
  • Tsagarakis NG, Caldwell DG. Development and control of a ‘soft-actuated’exoskeleton for use in physiotherapy and training. Auton Robots. 2003;15:21–33.
  • Galiana I, Hammond FL, Howe RD, et al. Wearable soft robotic device for post-stroke shoulder rehabilitation: identifying misalignments. IEEE/RSJ International Conference on Intelligent Robots and Systems. 7–12 Oct 2012; Vilamoura, Portugal, 317–322.
  • Kesner SB, Jentoft L, Hammond FL, et al. Design considerations for an active soft orthotic system for shoulder rehabilitation. Annual International Conference of the IEEE EMBS; 2011 Aug 30–Sept 3; Boston, MA. p. 8130–8134.
  • Wei W, Qu Z, Wang W, et al. Design on the Bowden Cable-Driven Upper Limb Soft Exoskeleton. Appl. Bionics Biomech. 2018;2018:1–9.
  • Gaponov I, Popov D, Lee SJ, et al. Auxilio: a portable cable-driven exosuit for upper extremity assistance. Int J Control Autom Syst. 2017;15:73–84.
  • Mao Y, Agrawal SK. Design of a cable-driven arm exoskeleton (CAREX) for neural rehabilitation. IEEE Trans Robot. 2012;28:922–931.
  • Schiele A, Hirzinger G. A new generation of ergonomic exoskeletons - the high-performance X-Arm-2 for space robotics telepresence. IEEE/RSJ International Conference on Intelligent Robots and Systems. 25–30 Sept 2011; San Fransisco, CA, USA, 2158–2165.
  • Westerveld AJ, Aalderink BJ, Hagedoorn W, et al. A damper driven robotic end-point manipulator for functional rehabilitation exercises after stroke. IEEE Trans Biomed Eng. 2014;61:2646–2654.
  • Veneman JF, Ekkelenkamp R, Kruidhof R, et al. series elastic-and bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots. Int J Rob Res. 2006;25:261–281.
  • Li J, Wang S, Wang J, et al. Development of a hand exoskeleton system for index finger rehabilitation. Chin J Mech Eng. 2012;25:223–233.
  • Moreno JC, Brunetti F, Navarro E, et al. Analysis of the human interaction with a wearable lower-limb exoskeleton. Appl. Bionics Biomech. 2009;6:245–256.
  • Pons JL. Rehabilitation exoskeletal robotics. The promise of an emerging field. IEEE Eng Med Biol Mag. 2010;29:57–63.
  • Pedrocchi A, Ferrante S, Ambrosini E, et al. MUNDUS project: Multimodal neuroprosthesis for daily upper limb support. J NeuroEngineering Rehabil. 2013;10:66.
  • Ball S, Brown I, Scott S. Designing a robotic exoskeleton for shoulder complex rehabilitation. 30th Canadian Medical and Biological Engineering Conference; 2007 Jun 16-19; Toronto, Canada, 1–4.
  • Riener R. Robot-aided rehabilitation of neural function in the upper extremities. In: Sakas DE, Simpson BA, Krames ES (eds), Operative Neuromodulation. Vienna: Springer; 2007. p. 465–471.
  • Ball SJ, Brown IE, Scott SH. MEDARM: a rehabilitation robot with 5DOF at the shoulder complex. IEEE/ASME International Conference on Advance Intelligent Mechatronics.4–7 Sept 2007; Zurich, Switzerland, 1–6.
  • Esmaeili M, Gamage K, Tan E, et al. Ergonomic considerations for anthropomorphic wrist exoskeletons: A simulation study on the effects of joint misalignment. IEEE/RSJ International Conference on Intelligent Robots and Systems. 25–30 Sept 2011; San Fransisco, CA, USA, 4905–4910.
  • Vitiello N, Lenzi T, Roccella S, et al. NEUROExos: a powered elbow exoskeleton for physical rehabilitation. IEEE Trans Robot. 2013;29:220–235.
  • Alamdari A, Krovi V. Design and analysis of a cable-driven articulated rehabilitation system for gait training. J Mech Robot. 2015;8:1–33.
  • Alamdari A, Haghighi R, Krovi V. Gravity-balancing of elastic articulated-cable leg-orthosis emulator. Mech Mach Theory. 2019;131:351–370.
  • Zhang F, Hua L, Fu Y, et al. Design and development of a hand exoskeleton for rehabilitation of hand injuries. Mech Mach Theory. 2014;73:103–116.
  • Song Z, Guo S. Design process of exoskeleton rehabilitation device and implementation of bilateral upper limb motor movement. J Med Biol Eng. 2012;32:323–330.
  • Song Z, Guo S, Pang M, et al. ULERD-based active training for upper limb rehabilitation. IEEE International Conference on Mechatronics and Automation. 5–8 Aug 2012; Chengdu, China, 569–574.
  • Gopura R, Kiguchi K, Li Y. SUEFUL-7: a 7DOF upper-limb exoskeleton robot with muscle-model-oriented EMG-based control. IEEE/RSJ International Conference on Intelligent Robots and Systems. 10–15 October 2009; St. Louis, MO, USA, 1126–1131.
  • Park H, Ren Y, Zhang L-Q. IntelliArm: An exoskeleton for diagnosis and treatment of patients with neurological impairments. IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics. 19–22 Oct 2008; Scottsdale, AZ, USA, 109–114.
  • Stienen AHA, Hekman EEG, Van der HF, et al. Dampace: dynamic force-coordination trainer for the upper extremities. International Conference on Rehabilitation Robotics. 13–15 June 2007; Noordwijk, Netherlandsitalic, 820–826.
  • Martinez F, Retolaza I, Pujana-Arrese A, et al. Design of a five actuated DoF upper limb exoskeleton oriented to workplace help. IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics.19–22 Oct 2008; Scottsdale, AZ, USA, 169–174.
  • Johnson GR, Carus DA, Parrini G, et al. The design of a five-degree-of-freedom powered orthosis for the upper limb. Proc Inst Mech Eng H. 2001;215:275–284.
  • Xiao F, Gao Y, Wang Y, et al. Design of a wearable cable-driven upper limb exoskeleton based on epicyclic gear trains structure. Technol Health Care. 2017;25:3–11.
  • Xiao F, Gao Y, Wang Y, et al. Design and evaluation of a 7-DOF cable-driven upper limb exoskeleton. J Mech Sci Technol. 2018;32:855–864.
  • Jarrett C, McDaid AJ. Robust Control of a Cable-Driven Soft Exoskeleton Joint for Intrinsic Human-Robot Interaction. IEEE Trans Neural Syst Rehabil Eng. 2017;25:976–986.
  • John MRS, Thomas N, Sivakumar VPR. Design and development of cable driven upper limb exoskeleton for arm rehabilitation. Int J Sci Eng Res. 2016;7:1432–1440.
  • Zhou L, Bai S, Andersen MS, et al. Design and Optimization of a Spring-loaded Cable-driven Robotic Exoskeleton. Proceedings of the 25th Nordic Seminar on Computational Mechanics. Lund University; 2012. p. 205–208.
  • Perry JC, Rosen J. Design of a 7 degree-of-freedom upper-limb powered exoskeleton. IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. 20–22 Feb 2006; Pisa, Italy, 805–810.
  • Dowling AV, Barzilay O, Lombrozo Y, et al. An adaptive home-use robotic rehabilitation system for the upper body. IEEE J Transl Eng Health Med. 2014;2:1–10.
  • Ball SJ, Brown IE, Scott SH. A planar 3DOF robotic exoskeleton for rehabilitation and assessment. Annual International Conference of the IEEE EMBS; 2007 Aug 23–26; Lyon, France. p. 4024–4027.
  • Liu K, Xiong C. A novel 10-DoF exoskeleton rehabilitation robot based on the postural synergies of upper extremity movements. International Conference on Intelligent Robotics and Applications; 2013 Sept 25–28; Busan, Korea. p. 363–372.
  • Frisoli A, Borelli L, Montagner A, et al. Arm rehabilitation with a robotic exoskeleleton in virtual reality. IEEE International Conference on Rehabilitation Robotics. 13–15 June 2007; Noordwijk, Netherlands, 631–642.
  • Jarrasse N, Robertson J, Garrec P, et al. Design and acceptability assessment of a new reversible orthosis. IEEE/RSJ International Conference on Intelligent Robots and Systems. 22–26 Sept 2008; Nice, France, 1933–1939.
  • Zhou L, Bai S, Andersen MS, et al. Modeling and design of a spring-loaded, cable-driven, wearable exoskeleton for the upper extremity. Model Identif Contrl. 2015;36:167–177.
  • Ismail M, Lahouar S, Romdhane L. Dynamic analysis and control of a hybrid serial/cable driven robot for lower-limb rehabilitation. In: Zeghloul S, Romdhane L, Laribi M (eds) Computational Kinematics. Cham: Springer; 2018. p. 109–116.
  • Wu J, Huang J, Wang Y, et al. A wearable rehabilitation robotic hand driven by PM-TS actuators. International Conference on Intelligent Robotics and Applications; 2010 Nov 10–12; Shanghai, China. p. 440–450.
  • Jiang X, Xiong C, Sun R, et al. Characteristics of the robotic arm of a 9-DoF upper limb rehabilitation robot powered by pneumatic muscles. In: Liu H, Ding H, Xiong Z, Zhu X (eds) International Conference on Intelligent Robots and Applications; 2010 Nov 10-12; Shanghai, China. p. 463–474.
  • Sugar TG, He J, Koeneman EJ, et al. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy. IEEE Trans Neural Syst Rehabil Eng. 2007;15:336–346.
  • He J, Koeneman EJ, Schultz RS, et al. Design of a robotic upper extremity repetitive therapy device. International Conference on Rehabilitation Robotics. 28 June–1 July 2005; Chicago, IL, USA, 95–98.
  • Liu Y, Gao Y, Xiao F, et al. Research on the cable-pulley underactuated lower limb exoskeleton. IEEE International Confernece on Mechatronics and Automation. 6–9 Aug 2017; Takamatsu, Japan, 577–583.
  • Veneman JF, Kruidhof R, Hekman EEG, et al. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007;15:379–386.
  • Ekkelenkamp R, Veneman J, H van der K. LOPES: a lower extremity powered exoskeleton. IEEE International Conference on Robotics and Automation. 10–14 Apr 2007; Roma, Italy, 3132–3133.
  • Costa N, Bezdicek M, Brown M, et al. Joint motion control of a powered lower limb orthosis for rehabilitation. Int J Automat Comput. 2006;3:271–281.
  • Hyon S, Morimoto J, Matsubara T, et al. XoR: Hybrid drive exoskeleton robot that can balance. IEEE/RSJ International Conference on Intelligent Robots and Systems. 25–30 Sept 2011; San Fransisco, CA, USA, 3975–3981.
  • Noda T, Takai A, Teramae T, et al. Robotizing double-bar ankle-foot orthosis. IEEE International Conference on Robotics and Automation; 2018 May 21–25; Brisbane, Australia. p. 2782–2787.
  • Ferris DP, Lewis CL. Robotic lower limb exoskeletons using proportional myoelectric control. Annual International Conference of the IEEE EMBS; 2009 Sept 2–6; Minneapolis, MN. p. 2119–2124.
  • Jones CL, Wang F, Morrison R, et al. Design and development of the cable actuated finger exoskeleton for hand rehabilitation following stroke. IEEE/ASME Trans Mechatron. 2014;19:131–140.
  • Cempini M, Rossi SMM D, Lenzi T, et al. Kinematics and design of a portable and wearable exoskeleton for hand rehabilitation. IEEE International Conference on Rehabilitation Robotics; 2013 Jun 24-26; Seattle, WA. p. 1–6.
  • Wang S, Li J, Zheng R. A resistance compensation control algorithm for a cable-driven hand exoskeleton for motor function rehabilitation. International Conference on Intelligent Robotics and Applications; 2010 Nov 10-12; Shanghai, China. p. 398–404.
  • Fu Y, Zhang Q, Zhang F, et al. Design and development of a hand rehabilitation robot for patient-cooperative therapy following stroke. IEEE International Conference on Mechatronics and Automation. 7–10 Aug 2011; Beijing, China, 112–117.
  • Liu S, Meng D, Cheng L, et al. An iterative learning controller for a cable-driven hand rehabilitation robot. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. 29 Oct–1 Nov 2017; Beijing, China, 5701–5706.
  • Aubin PM, Sallum H, Walsh C, et al. A pediatric robotic thumb exoskeleton for at-home rehabilitation: The isolated orthosis for thumb actuation (IOTA). IEEE International Conference on Rehabilitation Robotics; 2013 Jun 24-26; Seattle, WA. p. 1–6.
  • Pezent E, Rose CG, Deshpande AD, et al. Design and characterization of the OpenWrist: a robotic wrist exoskeleton for coordinated hand-wrist rehabilitation. IEEE International Conference on Rehabilitation Robotics; 2017 Jul 17-20; London, UK. p. 720–725.
  • Yamaura H, Matsushita K, Kato R, et al. Development of hand rehabilitation system using wire-driven link mechanism for paralysis patients. IEEE International Conference on Robotics and Biomimetics. 19–23 Dec 2009; Guilin, China, 209–214.
  • Cui X, Chen W, Zhang J, et al. Note: model-based identification method of a cable-driven wearable device for arm rehabilitation. Rev Sci Instrum. 2015;86:096107.
  • Cui X, Chen W, Jin X, et al. Design of a 7-dof cable-driven arm exoskeleton (carex-7) and a controller for dexterous motion training or assistance. IEEE/ASME Trans Mechatron. 2017;22:161–172.
  • Shao Z-F, Tang X, Yi W. Optimal design of a 3-DOF cable-driven upper arm exoskeleton. Adv Mech Eng. 2014;6:157096.
  • Li Z, Chen W, Zhang J, et al. Design and control of a 4-DOF cable-driven arm rehabilitation robot (CARR-4). IEEE International Conference on Cybernetics and Intelligent Systems and IEEE Conference on Robotics, Automation and Mechatronics. 19–21 Nov 2017; Ningbo, China, 581–586.
  • Chen W, Cui X, Zhang J, et al. A cable-driven wrist robotic rehabilitator using a novel torque-field controller for human motion training. Rev Sci Instrum. 2015;86:0–14.
  • Kim DH, Park H. Cable Actuated Dexterous (CADEX) Glove for Effective Rehabilitation of the Hand for Patients with Neurological diseases. IEEE/RSJ International Conference on Intelligent Robots and Systems; 2018 Oct 1–5; Madrid, Spain. p. 2305–2310.
  • Mohamaddan S, Komeda T. Wire-driven mechanism for finger rehabilitation device. IEEE International Conference on Mechatronics and Automation. 4–7 Aug 2010; X’ian, China, 1015–1018.
  • Yeow C-H, Baisch AT, Talbot SG, et al. Cable-driven finger exercise device with extension return springs for recreating standard therapy exercises. J Med Device. 2014;8:014502.
  • In H, Cho K, Kim K, et al. Jointless structure and under-actuation mechanism for compact hand exoskeleton. IEEE International Conference on Rehabilitation Robotics. 2011 Jun 29–Jul 1; Zurich, Switzerland. p. 1–6.
  • Kang BB, In H, Cho K. Force transmission in joint-less tendon driven wearable robotic hand. International Conference on Control, Automation and Systems. 17–21 Oct 2012; JeJu Island, South Korea, 1853–1858.
  • Park S, Weber L, Bishop L, et al. Design and development of effective transmission mechanisms on a tendon driven hand orthosis for stroke patients. IEEE International Conference Robotics and Automation; 2018 May 21–25; Brisbane, Australia. p. 2281–2287.
  • Jeong U, In HK, Cho KJ. Implementation of various control algorithms for hand rehabilitation exercise using wearable robotic hand. Intel Serv Robotics. 2013;6:181–189.
  • Jin X, Cui X, Agrawal SK. Design of a cable-driven active leg exoskeleton (C-ALEX) and gait training experiments with human subjects. IEEE International Conference Robotics and Automation. 26–30 May 2015; Seattle, WA, USA, 5578–5583.
  • Dhir N, Dallali H, Ficanha EM, et al. Locomotion envelopes for adaptive control of powered ankle prostheses. IEEE International Conference on Robotics and Automation; 2018 May 21-25; Brisbane, Australia. p. 1488–1495.
  • Jamwal PK, Xie S, Aw KC. Kinematic design optimization of a parallel ankle rehabilitation robot using modified genetic algorithm. Rob Auton Syst. 2009;57:1018–1027.
  • Park Y, Santos J, Galloway KG, et al. A soft wearable robotic device for active knee motions using flat pneumatic artificial muscles. IEEE International Conference on Robotics and Automation. 31 May–7 June 2014; Hong Kong, China, 4805–4810.
  • Lee S, Karavas N, Quinlivan BT, et al. Autonomous multi-joint soft exosuit for assistance with walking overground. IEEE International Conference on Robotics and Automation. 21–25 May 2018; Brisbane, QLD, Australia, 2812–2819.
  • Bae J, Siviy C, Rouleau M, et al. A lightweight and efficient portable soft exosuit for paretic ankle assistance in walking after stroke. IEEE International Conference on Robotics and Automation. 21–25 May 2018; Brisbane, QLD, Australia, 2820–2827.
  • Kim J, Heimgartner R, Lee G, et al. Autonomous and portable soft exosuit for hip extension assistance with online walking and running detection algorithm. IEEE International Conference on Robotics and Automation. 21–25 May 2018; Brisbane, QLD, Australia, 1–8.
  • Wehner M, Quinlivan B, Aubin PM, et al. A lightweight soft exosuit for gait assistance. IEEE International Conference on Robotics and Automation. 6–10 May 2013; Karlsruhe, Germany, 3362–3369.
  • Park YL, Chen BR, Pérez-Arancibia NO, et al. Design and control of a bio-inspired soft wearable robotic device for ankle–foot rehabilitation. Bioinspir Biomim. 2014;9:16007.
  • Merlet JP. MARIONET, a family of modular wire-driven parallel robots. In: Lenarcic J, Stanisic M (eds) Advances in Robot Kinematics: Motion in Man and Machine. Dordrecht: Springer; 2010. p. 53–61.
  • Xiong H, Diao X. Cable tension control of cable-driven parallel manipulators with position-controlling actuators. IEEE International Conference on Robotics and Biomimetics. 5–8 Dec 2017; Macau, China, 1763–1768.
  • Xiong H, Zhang L, Liu Z, et al. Joint force analysis and moment efficiency index of cable-driven rehabilitation devices. IEEE-RAS 18th International Conference on Humanoid Robots; 2018 Nov 6-9; Beijing, China. p. 1–5.
  • Jin X, Jun DI, Jin X, et al. Upper limb rehabilitation using a planar cable-driven parallel robot with various rehabilitation strategies. In: Pott A, Bruckmann T (eds), Cable-Driven Parallel Robots. Mechanisms and Machine Science. Cham: Springer; 2015. p. 307–321.
  • Morris M, Masory O. Planar cable-driven rehabilitation robot. Florida Conference on Recent Advances in Robotics; 2008 May 8-9; Melbourne, FL. p. 1–4.
  • Rosati G, Zanotto D, Secoli R, et al. Design and control of two planar cable-driven robots for upper-limb neurorehabilitation. International Conference on Rehabilitation Robotics. 23–26 June 2009; Kyoto, Japan, 560–565.
  • Zanotto D, Rosati G, Minto S, et al. Sophia-3: a semiadaptive cable-driven rehabilitation device with a tilting working plane. IEEE Trans Robot. 2014;30:974–979.
  • Jin X, Jun DI, Jin X, et al. Workspace analysis of upper limb for a planar cable-driven parallel robots toward upper limb rehabilitation. International Conference on Control, Automation and Systematics. 22–25 Oct 2014; Seoul, South Korea, 352–356.
  • Rosati G, Secoli R, Zanotto D, et al. Planar robotic systems for upper-limb post-stroke rehabilitation. ASME International Mechanical Engineering Congress and Expoistion; 2008 Oct 31–Nov 6; Boston, MA. p. 115–124.
  • Niu J, Yang Q, Wang X, et al. Sliding mode tracking control of a wire-driven upper-limb rehabilitation robot with nonlinear disturbance observer. Front Neurol. 2017;8:646.
  • Niu J, Yang Q, Chen G, et al. Nonlinear disturbance observer based sliding mode control of a cable-driven rehabilitation robot. International Conference on Rehabilitation Robotics. 17–20 July 2017; London, UK, 664–669.
  • Fanin C, Gallina P, Rossi A, et al. Nerebot: a wire-based robot for neurorehabilitation. International Conference on Rehabilitation Robotics; 2003 Apr 23–25; Daejeon, South Korea. p. 23–27.
  • Rosati G, Andreolli M, Biondi A, et al. Performance of cable suspended robots for upper limb rehabilitation. International Conference on Rehabilitation Robotics. 13–15 June 2007; Noordwijk, Netherlands, 385–392.
  • Rosati G, Gallina P, Rossi A, et al. Wire-based robots for upper-limb rehabilitation. Int J Assist Robot Mechatronics. 2006;7:3–10.
  • Rosati G, Gallina P, Masiero S, et al. Design of a new 5 d.o.f. wire-based robot for rehabilitation. International Conference on Rehabilitation Robotics. 28 June–1 July 2005; Chicago, IL, USA, 430–433.
  • Nunes WM, Rodrigues LAO, Oliveira LP, et al. Cable-based parallel manipulator for rehabilitation of shoulder and elbow movements. International Conference on Rehabilitation Robotics. 29 June–1 July 2011; Zurich, Switzerland, 1–6.
  • Alamdari A, Krovi V. Modeling and control of a novel home-based cable-driven parallel platform robot: PACER. IEEE/RSJ International Conference on Intelligent Robots and Systems. 28 Sept–2 Oct 2015; Hamburg, Germany, 6330–6335.
  • Alamdari A, Krovi V. Parallel articulated-cable exercise robot (PACER): novel home-based cable-driven parallel platform robot for upper limb neuro-rehabilitation. ASME International Design Engineering Technical Conferences and Computersand Information in Engineering Conference; 2015 Aug 2–5; Boston, MA. p. 1–10.
  • Dovat L, Lambercy O, Johnson V, et al. A cable driven robotic system to train finger function after stroke. International Conference on Rehabilitation Robotics. 13–15 June 2007; Noordwijk, Netherlands, 222–227.
  • Dovat L, Lambercy O, Gassert R, et al. HandCARE: a cable-actuated rehabilitation system to train hand function after stroke. IEEE Trans Neural Syst Rehabil Eng. 2008;16:582–591.
  • Wu M, Hornby TG, Landry JM, et al. A cable-driven locomotor training system for restoration of gait in human SCI. Gait Posture. 2011;33:256–260.
  • Gharatappeh S, Abbasnejad G, Yoon J, et al. Control of cable-driven parallel robot for gait rehabilitation. International Conference Ubiquitous Robots and Ambient Intelligence. 28–30 Oct 2015; Goyang, South Korea, 377–381.
  • Abbasnejad G, Yoon J, Lee H. Optimum kinematic design of a planar cable-driven parallel robot with wrench-closure gait trajectory. Mech. Mach. Theory. 2016;99:1–18.
  • Gonçalves RS, Carvalho JCM, Rodrigues LAO, et al. Cable-driven parallel manipulator for lower limb rehabilitation. Appl Mechan Mater. 2014;459:535–542.
  • Barbosa AM, Carvalho JCM, Gonçalves RS. Cable-driven lower limb rehabilitation robot. J. Braz Soc Mech Sci Eng. 2018;40:245.
  • Homma K, Fukuda O, Nagata Y. Study of a wire-driven leg rehabilitation system. IEEE/RSJ International Conference on Intelligent Robots and Systems. 28 Sept–2 Oct 2002; Sendai, Japan, 1451–1456.
  • Homma K, Fukuda O, Sugawara J, et al. A wire-driven leg rehabilitation system: development of a 4-DOF experimental system. IEEE/ASME International Conference on Advanced Intelligent Mechatronics. 20–24 July 2003; Kobe, Japan, 908–913.
  • Faqihi H, Saad M, Benjelloun K, et al. Tracking trajectory of a cable-driven robot for lower limb rehabilitation. Int J Electr Comput Energ Electron Commun Eng. 2016;10:1015–1020.
  • Park EJ, Kang J, Su H, et al. Design and preliminary evaluation of a multi-robotic system with pelvic and hip assistance for pediatric gait rehabilitation. IEEE International Conference on Rehabilitation Robotics; 2017 Jul 17–20; London, UK. p. 332–339.
  • Surdilovic D, Zhang J, Bernhardt R. STRING-MAN: wire-robot technology for safe, flexible and human-friendly gait rehabilitation. International Conference on Rehabilitation Robotics. 13–15 June 2007; Noordwijk, Netherlands, 446–453.
  • Meunier G, Boulet B, Nahon M. Control of an overactuated cable-driven parallel mechanism for a radio telescope application. IEEE Trans Contr Syst Technol. 2009;17:1043–1054.
  • Jamshidifar H, Khosravani S, Fidan B, et al. Vibration decoupled modeling and robust control of redundant cable-driven parallel robots. IEEE/ASME Transact Mechatron. 2018;23:690–701.
  • Zi B, Duan BY, Du JL, et al. Dynamic modeling and active control of a cable-suspended parallel robot. Mechatronics. 2008;18:1–12.
  • Babaghasabha R, Khosravi MA, Taghirad HD. Adaptive robust control of fully-constrained cable driven parallel robots. Mechatronics 2015;25:27–36.
  • Caverly RJ, Forbes JR. Dynamic modeling and noncollocated control of a flexible planar cable-driven manipulator. IEEE Trans Robot. 2014;30:1386–1397.
  • Williams RL, Gallina P, Vadia J. Planar translational cable‐direct‐driven robots. J Robotic Syst. 2003;20:107–120.
  • Khosravi MA, Taghirad HD. Dynamic modeling and control of parallel robots with elastic cables: singular perturbation approach. IEEE Trans Robot. 2014;30:694–704.
  • Fleerkotte BM, Buurke JH, Koopman B, et al. Effectiveness of the LOwer Extremity Powered ExoSkeleton (LOPES) robotic gait trainer on ability and quality of walking in SCI patients. In: Pons JL, Torricelli D, Pajaro M, editors. Converging clinical and engineering research on neurorehabilitation. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. p. 161–165.
  • Coote S, Murphy B, Harwin W, et al. The effect of the GENTLE/s robot-mediated therapy system on arm function after stroke. Clin Rehabil. 2008;22:395–405.
  • Wirz M, Zemon DH, Rupp R, et al. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: A multicenter trial. Arch Phys Med Rehabil. 2005;86:672–680.
  • Mao Y, Jin X, Dutta GG, et al. Human movement training with a cable driven ARm EXoskeleton (CAREX). IEEE Trans Neural Syst Rehabil Eng. 2015;23:84–92.
  • Huang HC, Chung KC, Lai DC, et al. The impact of timing and dose of rehabilitation delivery on functional recovery of stroke patients. J Chin Med Assoc. 2009;72:257–264.
  • Kwakkel G. Impact of intensity of practice after stroke: Issues for consideration. Disabil. Rehabil. 2006;28:823–830.
  • Hu J, Lim Y, Ding Y, et al. An advanced rehabilitation robotic system for augmenting healthcare. Annual International Conference of the IEEE EMBS; 2011 Aug 30–Sept 3; Boston, MA. p. 2073–2076.
  • Sulzer JS, Peshkin MA, Patton JL. MARIONET: An exotendon-driven rotary series elastic actuator for exerting joint torque. International Conference Rehabilitation Robotics. 28 June–1 July 2005; Chicago, IL, USA, 103–108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.