701
Views
8
CrossRef citations to date
0
Altmetric
Original Research

A study on the efficacy of AFO stiffness prescriptions

, , , , , , & show all
Pages 27-39 | Received 14 Jun 2018, Accepted 04 Jun 2019, Published online: 21 Jun 2019

References

  • Condie DN, Meadows CB. Some biomechanical considerations in the design of ankle-foot orthoses. Orthot Prosthet. 1977;31:45–52.
  • Yamamoto S, Ebina M, Iwasaki M, et al. Comparative study of mechanical characteristics of plastic AFOs. J Prosthetics Orthot. 1993;5:59/47–52/64.
  • Yamamoto S, Miyazaki S, Kubota T. Quantification of the effect of the mechanical property of AFOs on hemiplegic gait. Gait Posture. 1993;1:27–34.
  • Yamamoto S, Ebina M, Miyazaki S, et al. Development of a new ankle-foot orthosis with dorsiflexion assist, part 1: desirable characteristics of ankle-foot orthoses for hemiplegic patients. J Prosthetics Orthot. 1997;9:174–179.
  • Miyazaki S, Yamamoto S, Kubota T. Effect of ankle-foot orthosis on active ankle moment in patients with hemiparesis. Med Biol Eng Comput. 1997;35:381–385.
  • Yamamoto S, Ebina M, Kubo S, et al. Development of an ankle foot orthosis with dorsiflexion assist, part 2: structure and evaluation. J Prosthetics Orthot. 1999;11:24–28.
  • Yamamoto S. Gait changes in a hemiplegic patient using an ankle-foot orthosis with an oil damper: a case report. Clin Res Foot Ankle. 2014;2:8–13.
  • Yamamoto S, Tomokiyo N, Yasui T, et al. Effects of plantar flexion resistive moment generated by an ankle-foot orthosis with an oil damper on the gait of stroke patients: a pilot study. Prosthet Orthot Int. 2013;37:212–221.
  • Sumiya T, Suzuki Y, Kasahara T. Stiffness control in posterior-type plastic ankle-foot orthoses: effect of ankle trimline. Part 1: a device for measuring ankle moment. Prosthet Orthot Int. 1996;20:129–131.
  • Sumiya T, Suzuki Y, Kasahara T. Stiffness control in posterior-type plastic ankle-foot orthoses: effect of ankle trimline. Part 2: orthosis characteristics and orthosis/patient matching. Prosthet Orthot Int. 1996;20:132–137.
  • Ramsey JA. Development of a method for fabricating polypropylene non-articulated dorsiflexion assist ankle foot orthoses with predetermined stiffness. Prosthet Orthot Int. 2011;35(1):54–69.
  • Bregman DJJ, De Groot V, Van Diggele P, et al. Polypropylene ankle foot orthoses to overcome drop-foot gait in central neurological patients: a mechanical and functional evaluation. Prosthet Orthot Int. 2010;34:293–304.
  • Bregman DJJ, Van Der Krogt MM, De Groot V, et al. The effect of ankle foot orthosis stiffness on the energy cost of walking: a simulation study. Clin Biomech. 2011;26:955–961.
  • Bregman DJJ, Harlaar J, Meskers CGM, et al. Spring-like ankle foot orthoses reduce the energy cost of walking by taking over ankle work. Gait Posture. 2012;35:148–153.
  • Bregman DJJ. The Optimal Ankle Foot Orthosis: The influence of mechanical properties of Ankle Foot Orthoses on the walking ability of patients with central neurological disorders [dissertation]. Vrije Universiteit Amsterdam; 2011.
  • Kerkum YL, Harlaar J, Buizer AI, et al. An individual approach for optimizing ankle-foot orthoses to improve mobility in children with spastic cerebral palsy walking with excessive knee flexion. Gait Posture. 2016;46:104–111.
  • Kerkum YL, Buizer AI, Van Den Noort JC, et al. The effects of varying ankle foot orthosis stiffness on gait in children with spastic cerebral palsy who walk with excessive knee flexion. PLoS One. 2015;10:e0142878.
  • Ries AJ, Novacheck TF, Schwartz MH. A data driven model for optimal orthosis selection in children with cerebral palsy. Gait Posture. 2014;40:539–544.
  • Deckers JP, Vermandel M, Geldhof J, et al. Development and clinical evaluation of laser-sintered ankle foot orthoses. Plast Rubber Compos. 2018;47:42–46.
  • Ries AJ, Novacheck TF, Schwartz MH. The efficacy of ankle-foot orthoses on improving the gait of children with diplegic cerebral palsy: a multiple outcome analysis. PM R. 2015;7:922–929.
  • Patzkowski JC, Blanck RV, Owens JG, et al. Comparative effect of orthosis design on functional performance. J Bone Joint Surg Am. 2012;94:507–515.
  • Zelik KE, Adamczyk PG. A unified perspective on ankle push-off in human walking. J Exp Biol. 2016;219:3676–3683.
  • Kuo AD, Donelan JM. Dynamic principles of gait and their clinical implications. Phys Ther. 2010;90:157–174.
  • Brehm MA, Harlaar J, Schwartz M. Effect of ankle-foot orthoses on walking efficiency and gait in children with cerebral palsy. J Rehabil Med. 2008;40:529–534.
  • Faustini MC, Neptune RR, Crawford RH, et al. Manufacture of passive dynamic ankle-foot orthoses using selective laser sintering. IEEE Trans Biomed Eng. 2008;55:784–790.
  • Harper NG, Esposito ER, Wilken JM, et al. The influence of ankle-foot orthosis stiffness on walking performance in individuals with lower-limb impairments. Clin Biomech. 2014;29:877–884.
  • Russell Esposito E, Blanck RV, Harper NG, et al. How does ankle-foot orthosis stiffness affect gait in patients with lower limb salvage? Clin Orthop Relat Res. 2014;472:3026–3035.
  • Russell Esposito E, Choi HS, Owens JG, et al. Biomechanical response to ankle-foot orthosis stiffness during running. Clin Biomech. 2015;30:1125–1132.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.