1,757
Views
26
CrossRef citations to date
0
Altmetric
Review Article

Exploring serious games for stroke rehabilitation: a scoping review

ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 159-165 | Received 09 Dec 2019, Accepted 08 May 2020, Published online: 08 Jun 2020

References

  • World Health Organisation; 2018. Available from: http://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
  • Hendricks HT, Van Limbeek J, Geurts AC, et al. Motor recovery after stroke: a systematic review of the literature. Arch Phys Med Rehabil. 2002;83(11):1629–1637.
  • Lang CE, MacDonald JR, Reisman DS, et al. Observation of amounts of movement practice provided during stroke rehabilitation. Arch Phys Med Rehabil. 2009;90(10):1692–1698.
  • Luker J, Lynch E, Bernhardsson S, et al. Stroke survivors' experiences of physical rehabilitation: a systematic review of qualitative studies. Arch Phys Med Rehabil. 2015;96(9):1698–1708.
  • Barker R, Brauer S. Upper limb recovery after stroke: the stroke survivors' perspective. Disabil Rehabil. 2005;27(20):1213–1223.
  • Langan J, Subryan H, Nwogu I, et al. Reported use of technology in stroke rehabilitation by physical and occupational therapists. Disabil Rehabil. 2018;13(7):641–647.
  • Tricco AC, Lillie E, Zarin W, et al. A scoping review on the conduct and reporting of scoping reviews. BMC Med Res Methodol. 2016;16(1):15
  • Hackett ML, Anderson CS, House AO. Management of depression after stroke: a systematic review of pharmacological therapies. Stroke. 2005;36(5):1092–1097.
  • Burke JW, McNeill M, Charles DK, et al. Optimising engagement for stroke rehabilitation using serious games. Vis Comput. 2009;25(12):1085–1099.
  • Girard C, Ecalle J, Magnan A. Serious games as new educational tools: how effective are they? a meta-analysis of recent studies. J Comput Assist Learn. 2013;29(3):207–219.
  • Tsekleves E, Cosmas J, Aggoun A. Benefits, barriers and guideline recommendations for the implementation of serious games in education for stakeholders and policymakers. Br J Educ Technol. 2016;47(1):164–183.
  • De Freitas S, Liarokapis F. Serious games: a new paradigm for education?. In: Ma M, Oikonomou A, Jain LC, editors. Serious games and edutainment applications. London: Springer; 2011. p. 9–23.
  • Vogiatzaki E, Krukowski A. Serious games for stroke rehabilitation employing immersive user interfaces in 3D virtual environment. J Health Informat. 2014;6. DOI:https://doi.org/10.5281/zenodo.13117
  • Ma M, Zheng H. Virtual reality and serious games in healthcare. In: Brahnam S, Jain LC, editors. Advanced computational intelligence paradigms in healthcare 6. Virtual reality in psychotherapy, rehabilitation, and assessment. Vol. 337. Berlin, Heidelberg: Springer; 2011. p. 169–192.
  • Tageldeen MK, Elamvazuthi I, Perumal N, et al. A virtual reality based serious games for rehabilitation of arm. 2017 IEEE 3rd International Symposium in Robotics and Manufacturing Automation (ROMA); IEEE; 2017. p. 1–6.
  • Rocha R, Rego PA, Faria BM, et al. A web platform of serious games for cognitive rehabilitation: architecture and usability study. In: Rocha Á, Correia A, Adeli H, et al., editors. New advances in information systems and technologies. Vol. 444. Cham: Springer; 2016. p. 1085–1095.
  • Perry JC, Rosen J, Burns S. Upper-limb powered exoskeleton design. IEEE/ASME Trans Mechatron. 2007;12(4):408–417.
  • Burke JW, McNeill M, Charles DK, et al. Augmented reality games for upper-limb stroke rehabilitation. 2010 Second International Conference on Games and Virtual Worlds for Serious Applications; IEEE; 2010. p. 75–78.
  • Grimm F, Naros G, Gharabaghi A. Closed-loop task difficulty adaptation during virtual reality reach-to-grasp training assisted with an exoskeleton for stroke rehabilitation. Front Neurosci. 2016;10:518.
  • Rahman MH, Rahman MJ, Cristobal O, et al. Development of a whole arm wearable robotic exoskeleton for rehabilitation and to assist upper limb movements. Robotica. 2015;33(1):19–39.
  • Schabowsky CN, Godfrey SB, Holley RJ, et al. Development and pilot testing of hexorr: hand exoskeleton rehabilitation robot. J NeuroEng Rehabil. 2010;7(1):36.
  • Schultheis MT, Rizzo AA. The application of virtual reality technology in rehabilitation. Rehabil Psychol. 2001;46(3):296–311.
  • Katz N, Ring H, Naveh Y, et al. Interactive virtual environment training for safe street crossing of right hemisphere stroke patients with unilateral spatial neglect. Disabil Rehabil. 2005;27(20):1235–1244.
  • Burdea GC. Virtual rehabilitation–benefits and challenges. Methods Inf Med. 2003;42(5):519–523.
  • Yates M, Kelemen A, Sik Lanyi C. Virtual reality gaming in the rehabilitation of the upper extremities post-stroke. Brain Inj. 2016;30(7):855–863.
  • Khademi M, Hondori HM, Lopes CV, et al. Haptic augmented reality to monitor human arm’s stiffness in rehabilitation. 2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences; IEEE; 2012. p. 892–895.
  • Deterding S, Dixon D, Khaled R, et al. From game design elements to gamefulness: defining gamification. Proceedings of the 15th international academic MindTrek conference: Envisioning future media environments; ACM; 2011. p. 9–15.
  • Loureiro RC, Harwin WS, Nagai K, et al. Advances in upper limb stroke rehabilitation: a technology push. Med Biol Eng Comput. 2011;49(10):1103–1118.
  • Morrow K, Docan C, Burdea G, et al. Low-cost virtual rehabilitation of the hand for patients post-stroke. 2006 International Workshop on Virtual Rehabilitation; IEEE; 2006. p. 6–10.
  • Lewis GN, Woods C, Rosie JA, et al. Virtual reality games for rehabilitation of people with stroke: perspectives from the users. Disabil Rehabil. 2011;6(5):453–463.
  • Saposnik G, Teasell R, Mamdani M, et al. Effectiveness of virtual reality using wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle. Stroke. 2010;41(7):1477–1484.
  • Roy AK, Soni Y, Dubey S. Enhancing effectiveness of motor rehabilitation using kinect motion sensing technology. 2013 IEEE Global Humanitarian Technology Conference: South Asia Satellite (GHTC-SAS); IEEE; 2013. p. 298–304.
  • Jain J, Lund A, Wixon D. The future of natural user interfaces. Chi’11 extended abstracts on human factors in computing systems; 2011. p. 211–214.
  • Rocha R, Reis LP, Rego PA, et al. New forms of interaction in serious games for cognitive rehabilitation: Implementation and usability study. 11th Iberian Conference on Information Systems and Technologies (CISTI); IEEE; 2016. p. 1–6.
  • Alankus G, Lazar A, May M, et al. Towards customizable games for stroke rehabilitation. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems; ACM; 2010. p. 2113–2122.
  • Acosta AM, Dewald HA, Dewald JP. Pilot study to test effectiveness of video game on reaching performance in stroke. J Rehabil Res Dev. 2011;48(4):431–444.
  • Liberati A, Altman DG, Tetzlaff J, et al. The prisma statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLOS Med. 2009;6(7):e1000100
  • Steenkamer BM, Drewes HW, Heijink R, et al. Defining population health management: a scoping review of the literature. Popul Health Manag. 2017;20(1):74–85.
  • Flores E, Tobon G, Cavallaro E, et al. Improving patient motivation in game development for motor deficit rehabilitation. Proceedings of the 2008 International Conference on Advances in Computer Entertainment Technology; ACM; 2008. p. 381–384.
  • Pinelle D, Wong N, Stach T. Heuristic evaluation for games: usability principles for video game design. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems; ACM; 2008. p. 1453–1462.
  • Rand D, Kizony R, Weiss P. The sony playstation ii eyetoy: low-cost virtual reality for use in rehabilitation. J Neurol Phys Ther. 2008;32(4):155–163.
  • Broeren J, Jalminger J, Johansson LA, et al. A kinematic game for stroke upper arm motor rehabilitation-a person centred approach. J Accessibil Design All. 2014;4(2):81–93.
  • Shin JH, Ryu H, Jang SH. A task-specific interactive game-based virtual reality rehabilitation system for patients with stroke: a usability test and two clinical experiments. J Neuroeng Rehabil. 2014;11(1):32.
  • Flynn S, Palma P, Bender A. Feasibility of using the sony playstation 2 gaming platform for an individual poststroke: a case report. J Neurol Phys Ther. 2007;31(4):180–189.
  • Borghese NA, Pirovano M, Lanzi PL, et al. Computational intelligence and game design for effective at-home stroke rehabilitation. Games Health J. 2013;2(2):81–88.
  • Salen K, Tekinbaş KS, Zimmerman E. Rules of play: game design fundamentals. Cambridge (MA) and London: MIT Press; 2004.
  • Salen K, Zimmerman E. Game design and meaningful play. Handbook Comput Game Stud. 2005;59:79.
  • Hocine N, Gouaïch A, Cerri SA, et al. Adaptation in serious games for upper-limb rehabilitation: an approach to improve training outcomes. User Model User-Adap Inter. 2015;25(1):65–98.
  • Lange B, Flynn S, Proffitt R, et al. Development of an interactive game-based rehabilitation tool for dynamic balance training. Top Stroke Rehabil. 2010;17(5):345–352.
  • Carabeo CGG, Dalida CMM, Padilla EMZ, et al. Stroke patient rehabilitation: a pilot study of an android-based game. Simul Gaming. 2014;45(2):151–166.
  • Bower KJ, Louie J, Landesrocha Y, et al. Clinical feasibility of interactive motion-controlled games for stroke rehabilitation. J Neuroeng Rehabil. 2015;12(1):63.
  • Heins S, Dehem S, Montedoro V, et al. Robotic-assisted serious game for motor and cognitive post-stroke rehabilitation. 2017 IEEE 5th International Conference on Serious Games and Applications for Health (SeGAH); IEEE; 2017. p. 1–8.
  • Ma M, Bechkoum K. Serious games for movement therapy after stroke. 2008 IEEE International Conference on Systems, Man and Cybernetics; IEEE; 2008. p. 1872–1877.
  • Popović MD, Kostić MD, Rodić SZ, et al. Feedback-mediated upper extremities exercise: increasing patient motivation in poststroke rehabilitation. BioMed Res Int. 2014;2014:1–11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.