455
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Promoting clinical best practice in a user-centred design study of an upper limb rehabilitation robot

, , , , , , , , & show all
Pages 531-538 | Received 29 Aug 2019, Accepted 17 Jun 2020, Published online: 01 Jul 2020

References

  • Mozaffarian D, Benjamin E, Go A, et al. Executive Summary: heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation. 2016;133(4):447–454.
  • Lai S, Studenski S, Duncan P, et al. Persisting consequences of stroke measured by the stroke impact scale. Stroke. 2002;33(7):1840–1844.
  • Maciejasz P, Eschweiler J, Gerlach-Hahn K, et al. A survey on robotic devices for upper limb rehabilitation. J NeuroEngineering Rehabil. 2014;11(1):3.
  • Mehrholz J, Pohl M, Platz T, et al. Electromechanical and robot‐assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev. 2018;(9).
  • Lu E, Wang R, Hebert D, et al. The development of an upper limb stroke rehabilitation robot: identification of clinical practices and design requirements through a survey of therapists. Disabil Rehabil Assist Technol. 2011;6(5):420–431.
  • Carr J, Shepherd R. A motor learning model for stroke rehabilitation. Physiotherapy. 1989;75(7):372–380.
  • Taub E, Miller N, Novack T, et al. Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil. 1993;74(4):347–354.
  • Bobath B. Adult hemiplegia: evaluation and treatment. Oxford: Elsevier Health Sciences; 1990.
  • Lee M, Rittenhouse M, Abdullah HA. Design issues for therapeutic robot systems: results from a survey of physiotherapists. J Intell Robot Syst. 2005;42(3):239–252.
  • Weightman A, Alexoulis-Chrysovergis AC, Oltean S. What should we consider when designing rehabilitation robots for the upper. Proceedings of Australasian Conference on Robotics and Automation, Melbourne; 2014.
  • Lu EC, Wang R, Huq R, et al. Development of a robotic device for upper limb stroke rehabilitation: A user-centered design approach. PALADYN J Behav Robotics. 2011;2(4):176–184.
  • Holt R, Makower S, Jackson A, et al. User involvement in developing rehabilitation robotic devices: an essential requirement. Proceedings of the IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk; 2007.
  • Fong J, Crocher V, Tan Y, et al. “EMU: A transparent 3D robotic manipulandum for upper-limb rehabilitation.” Proceedings of the 2017 IEEE International Conference Rehabilitation Robotics (ICORR), pp. 771–776, 2017.
  • Venkatesh V, Davis F. A theoretical extension of the technology acceptance model: four longitudinal field studies. Manage Sci. 2000;46(2):186–204.
  • Braun V, Clarke V. Using thematic analysis in psychology. Qual Res Psychol. 2006;3(2):77–101.
  • Crocher V, Fong J, Klaic M, et al. Direct versus indirect visual feedback: the effect of technology in neurorehabilitation. Proceedings of the International IEEE/EMBS Conference on Neural Engineering (NER), San Francisco; 2019.
  • The Stroke Foundation. Clinical Guidelines for Stroke Management 2017; 2018. Available from: https://informme.org.au/en/Guidelines/Clinical-Guidelines-for-Stroke-Management-2017.
  • Colombo R, Pisano F, Mazzone A, et al. Design strategies to improve patient motivation during robot-aided rehabilitation. J NeuroEngineering Rehabil. 2007;4(1):3.
  • Roby-Brami A, Feydy A, Combeaud M, et al. Motor compensation and recovery for reaching in stroke patients. Acta Neurol Scand. 2003;107(5):369–381.
  • Nordin N, Xie S, Wünsche B. Assessment of movement quality in robot-assisted upper limb rehabilitation after stroke: a review. J NeuroEngineering Rehabil. 2014;11(1):137.
  • Jarrasse N, Kuhne M, Roach N, et al. Analysis of grasping strategies and function in hemiparetic patients using an instrumented object. Proceedings of theInternational Conference on Rehabilitation Robotics (ICORR); 2013.
  • Crocher V, Fong J, Bosch T, et al. Upper limb deweighting using underactuated end-effector-based backdrivable manipulanda. IEEE Robot Autom Lett. 2018;3(3):2116–2122.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.