611
Views
2
CrossRef citations to date
0
Altmetric
Review Article

The clinical effects of brain–computer interface with robot on upper-limb function for post-stroke rehabilitation: a meta-analysis and systematic review

ORCID Icon, , , , , & show all
Pages 30-41 | Received 19 Nov 2021, Accepted 26 Mar 2022, Published online: 21 Apr 2022

References

  • Johnson CO, Nguyen M, Roth GA, et al. Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2019;18(5):439–458.
  • Norouzi-Gheidari N, Archambault PS, Fung J. Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: systematic review and meta-analysis of the literature. J Rehabil Res Dev. 2012;49(4):479–496.
  • Baniqued PDE, Stanyer EC, Awais M, et al. Brain-computer interface robotics for hand rehabilitation after stroke: a systematic review. J Neuroeng Rehabil. 2021;18(1):15.
  • Mab A, Gf B, Rl C, et al. Brain  computer interfaces in rehabilitation medicine. Pm&R. 2018;10(9):S233–S243.
  • Nierhaus T, Vidaurre C, Sannelli C, et al. Immediate brain plasticity after one hour of brain-computer interface (BCI). J Physiol. 2021;599(9):2435–2451.
  • Thakor NV. Translating the Brain-Machine interface. Sci Transl Med. 2013;5(210):210ps217.
  • Hong KS, Khan MJ. Hybrid brain-computer interface techniques for improved classification accuracy and increased number of commands: a review. Front Neurorobot. 2017;11:35.
  • Huppert T, Schmidt B, Beluk N, et al. Measurement of brain activation during an upright stepping reaction task using functional near-Infrared spectroscopy. Hum Brain Mapp. 2013;34(11):2817–2828.
  • Allison BZ, Brunner C, Kaiser V, et al. Toward a hybrid brain-computer interface based on imagined movement and visual attention. J Neural Eng. 2010;7(2):26007.
  • Banville H, Falk TH. Recent advances and open challenges in hybrid brain-computer interfacing: a technological review of non-invasive human research. Brain-Computer Interfaces. 2016;3(1):9–46.
  • Jawad KM, Hong KS. Hybrid EEG–fNIRS-based eight-command decoding for BCI: application to quadcopter control. Front Neurorobot. 2017;11:6.
  • Li Z, Zhang S, Pan J. Advances in hybrid Brain-Computer interfaces: Principles, design, and applications. Comput Intell Neurosci. 2019;2019:3807670.
  • Rupp R, Rohm M, Schneiders M, et al. Functional rehabilitation of the paralyzed upper extremity after spinal cord injury by noninvasive hybrid neuroprostheses. Proc Ieee. 2015;103(6):954–968.
  • Jiang J, Zhou Z, Yin E, et al. Hybrid Brain-Computer interface (BCI) based on the EEG and EOG signals. Biomed Mater Eng. 2014;24(6):2919–2925.
  • Yu T, Xiao J, Wang F, et al. Enhanced motor imagery training using a hybrid BCI with feedback. IEEE Trans Biomed Eng. 2015;62(7):1706–1717.
  • Rui Z, Li Y, Yan Y, et al. Control of a wheelchair in an indoor environment based on a Brain-Computer Interface and Automated Navigation. IEEE Trans Neural Syst Rehabil Eng. 2016;24(1):128–139.
  • Molteni F, Gasperini G, Cannaviello G, et al. Exoskeleton and End-Effector robots for upper and lower limbs rehabilitation: Narrative review. Pm R. 2018;10(9 Suppl 2):S174–S188.
  • Gull MA, Bai S, Bak T. A review on design of upper limb exoskeletons. Robotics. 2020;9(1):16.
  • Abdallah IB, Bouteraa Y, Rekik C. Design and development of 3D printed myoelectric robotic exoskeleton for hand rehabilitation. Int J Smart Sens Intelligent Syst. 2017;10(2):341–366.
  • Jarrett C, McDaid AJ. Robust control of a Cable-Driven soft exoskeleton joint for intrinsic Human-Robot interaction. IEEE Trans Neural Syst Rehabil Eng. 2017;25(7):976–986.
  • Kim S, Nussbaum MA, Mokhlespour Esfahani MI, et al. Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part II – “unexpected” effects on shoulder motion, balance, and spine loading. Appl Ergon. 2018;70:323–330.
  • Rodgers H, Bosomworth H, Krebs HI, et al. Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial. The Lancet. 2019;394(10192):51–62.
  • Tyc F, Boyadjian A. Plasticity of motor cortex induced by coordination and training. Clin Neurophysiol. 2011;122(1):153–162.
  • Mawase F, Uehara S, Bastian AJ, et al. Motor learning enhances Use-Dependent plasticity. J Neurosci. 2017;37(10):2673–2685.
  • Wu J, Srinivasan R, Burke Quinlan E, et al. Utility of EEG measures of brain function in patients with acute stroke. J Neurophysiol. 2016;115(5):2399–2405.
  • Cassidy JM, Wodeyar A, Wu J, et al. Low-Frequency oscillations are a biomarker of injury and recovery after stroke. Stroke. 2020;51(5):1442–1450.
  • Heuvel MD, Pol H. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol. 2010;20:519–534.
  • Park CH, Chang WH, Ohn SH, et al. Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke. 2011;42(5):1357–1362.
  • Wang L, Yu C, Chen H, et al. Dynamic functional reorganization of the motor execution network after stroke. Brain. 2010;133(Pt 4):1224–1238.
  • Zhu LL, Lindenberg R, Alexander MP, et al. Lesion load of the corticospinal tract predicts motor impairment in chronic stroke. Stroke. 2010;41(5):910–915.
  • Jie S, Nair VA, Young BM, et al. DTI measures track and predict motor function outcomes in stroke rehabilitation utilizing BCI technology. Front Hum Neurosci. 2015;9:195.
  • Wu Q, Yue Z, Ge Y, et al. Brain functional networks study of subacute stroke patients with upper limb dysfunction after comprehensive rehabilitation including BCI training. Front Neurol. 2019;10:1419–2020.
  • Bai Z, Fong KNK, Zhang JJ, et al. Immediate and long-term effects of BCI-based rehabilitation of the upper extremity after stroke: a systematic review and Meta-analysis. J Neuroeng Rehabil. 2020;17(1):57.
  • Moher D. Preferred reporting items for systematic reviews and Meta-analyses: the PRISMA statement (chinese edition). J Chin Integr Med. 2009;7(9):889–896.
  • Higgins JPT, Thompson SG. Quantifying heterogeneity in a metaanalysis. Statist Med. 2002;21(11):1539–1558.
  • Higgins J, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analysis. BMJ. 2003;327(7414):557–560.
  • Cervera MA, Soekadar SR, Ushiba J, et al. Brain-computer interfaces for post-stroke motor rehabilitation: a Meta-analysis. Ann Clin Transl Neurol. 2018;5(5):651–663.
  • Dersimonian R, Laird N. Meta-analysis in clinical trials revisited. Contemp Clin Trials. 2015;45(Pt A):139–145.
  • Lyukmanov RK, Aziatskaya GA, Mokienko OA, et al. Brain–computer interfaces in poststroke rehabilitation: a clinical neuropsychological study. Neurosci Behav Physi. 2019;49(8):1038–1046.
  • Ramos-Murguialday A, Broetz D, Rea M, et al. Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol. 2013;74(1):100–108.
  • Ang KK, Chua KSG, Phua KS, et al. A randomized controlled trial of EEG-Based motor imagery Brain-Computer interface robotic rehabilitation for stroke. Clin EEG Neurosci. 2015;46(4):310–320.
  • Ang KK, Guan C, Phua KS, et al. Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke. Front Neuroeng. 2014;7:30.
  • Wang X, Wong WW, Sun R, et al. Differentiated effects of robot hand training with and without neural guidance on neuroplasticity patterns in chronic stroke. Front Neurol. 2018;9:810–824.
  • Cheng N, Phua KS, Lai HS, et al. Brain-computer interface-based soft robotic glove rehabilitation for stroke. IEEE Trans Biomed Eng. 2020;67(12):3339–3351.
  • Ramos-Murguialday A, Curado MR, Broetz D, et al. Brain-machine interface in chronic stroke: randomized trial long-term follow-up. Neurorehabil Neural Repair. 2019;33(3):188–198.
  • Kondur AA, Biryukova EV, Frolov AA, et al. Rehabilitation of the armmotor function in poststroke patients with an exoskeleton-controlling brain-computer interface: effect of repeated hospitalizations. Hum Physiol. 2020;46(3):321–331.
  • Bundy DT, Souders L, Baranyai K, et al. Contralesional Brain-Computer interface control of a powered exoskeleton for motor recovery in chronic stroke survivors. Stroke. 2017;48(7):1908–1915.
  • Chowdhury A, Meena YK, Raza H, et al. Active physical practice followed by mental practice using BCI-Driven hand exoskeleton: a pilot trial for clinical effectiveness and usability. IEEE J Biomed Health Inform. 2018;22(6):1786–1795.
  • Nishimoto A, Kawakami M, Fujiwara T, et al. Feasibility of task-specific brain-machine interface training for upper-extremity paralysis in patients with chronic hemiparetic stroke. J Rehabil Med. 2018;50(1):52–58.
  • Rathee D, Chowdhury A, Meena YK, et al. Brain-machine interface-driven post-stroke upper-limb functional recovery correlates with beta-band mediated cortical networks. IEEE Trans Neural Syst Rehabil Eng. 2019;27(5):1020–1031.
  • Yuan K, Wang X, Chen C, et al. Interhemispheric functional reorganization and its structural base after BCI-guided upper-limb training in chronic stroke. IEEE Trans Neural Syst Rehabil Eng. 2020;28(11):2525–2536.
  • Ohn SH, Yoo WK, Kim DY, et al. Measurement of synergy and spasticity during functional movement of the post-stoke hemiplegic upper limb. J Electromyogr Kinesiol. 2013;23(2):501–507.
  • Lee J, Beckerman H, Lankhorst GJ, et al. The responsiveness of the action research arm test and the Fugl-Meyer assessment scale in chronic stroke patients. J Rehabil Med. 2001;33(3):110–113.
  • Frolov AA, Mokienko O, Lyukmanov R, et al. Post-stroke rehabilitation training with a motor-imagery-based brain-computer interface (BCI)-controlled hand exoskeleton: a randomized controlled multicenter trial. Front Neurosci. 2017;11:11.
  • Dzhalagoniya I, Biryukova E, Bushkova Y, et al. Biomechanical assessment of Fugl-Meyer score: the case of one post stroke patient who has undergone the rehabilitation using hand exoskeleton controlled by Brain-Computer interface. Int J Phys Med Rehabil. 2018;06(03):1–9.
  • Gladstone DJ, Danells CJ, Black SE. The Fugl-Meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair. 2002;16(3):232–240.
  • Duncan PW, Lai SM, Keighley J. Defining post-stroke recovery: implications for design and interpretation of drug trials. Neuropharmacology. 2000;39(5):835–841.
  • Sanford J, Moreland J, Swanson LR, et al. Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. Phys Ther. 1993;73(7):447–454.
  • Doussoulin SA, Rivas SR, Campos SV. Validation of "Action Research Arm Test" (ARAT) in Chilean patients with a paretic upper limb after a stroke[J]. Revista Medica de Chile. 2012;140(1):59–65.
  • Negrini S, Arienti C, Pollet J, et al. Clinical replicability of rehabilitation interventions in randomized controlled trials reported in main journals is inadequate. J Clin Epidemiol. 2019;114:108–117.
  • Arienti C, Lazzarini SG, Patrini M, et al. The structure of research questions in randomized-controlled trials in rehabilitation field. Am J Phys Med Rehabil. 2021;100(1):29–33.
  • Wagner TH, Lo AC, Peduzzi P, et al. An economic analysis of robot-assisted therapy for long-term upper-limb impairment after stroke. Stroke. 2011;42(9):2630–2632.
  • Jaeschke R, Singer J. Ascertaining the Minimal Clinically Important Difference. 1989.
  • Zeiler SR. Should We care about early Post-Stroke rehabilitation? Not yet, but soon. Curr Neurol Neurosci Rep. 2019;19(3):13.
  • Prabhakaran S, Zarahn E, Riley C, et al. Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabil Neural Repair. 2008;22(1):64–71.
  • Sidyakina I, Shapovalenko T, Lyadov K. Mechanisms of neuroplasticity and rehabilitation in the acute period of stroke. Ann Clin Exp Neurol. 2013;7:52–56.
  • Pekna M, Pekny M, Nilsson M. Modulation of neural plasticity as a basis for stroke rehabilitation. Stroke. 2012;43(10):2819–2828.
  • Varkuti B, Guan C, Pan Y, et al. Resting state changes in functional connectivity correlate with movement recovery for BCI and robot-assisted upper-extremity training after stroke. Neurorehabil Neural Repair. 2013;27(1):53–62.
  • Ertelt D, Small S, Solodkin A, et al. Action observation has a positive impact on rehabilitation of motor deficits after stroke. Neuroimage. 2007;36:T164–T173.
  • Carter AR, Astafiev SV, Lang CE, et al. Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol. 2010;67.
  • Westlake KP, Nagarajan SS. Functional connectivity in relation to motor performance and recovery after stroke. Front Syst Neurosci. 2011;5:8.
  • Di Pino G, Pellegrino G, Assenza G, et al. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat Rev Neurol. 2014;10(10):597–608.
  • McDonnell MN, Stinear CM. TMS measures of motor cortex function after stroke: a Meta-analysis. Brain Stimul. 2017;10(4):721–734.
  • Kotov SV, Turbina LG, Bobrov PD, et al. Rehabilitation of stroke patients with a bioengineered “brain–computer interface with exoskeleton” system. Neurosci Behav Physi. 2016;46(5):518–522.
  • Mokienko OA, Lyukmanov R, Chernikova LA, et al. [Brain-Computer interface: the first clinical experience in russia]. Fiziol Cheloveka. 2016;42:31–39.
  • Frolov AA, Mokienko OA, KhLR, et al. Preliminary results of a controlled study of bci-exoskeleton technology efficacy in patients with poststroke arm paresis. Bulletin of RSMU. 2016;(2):16–23.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.