143
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Architectural design and development of an upper-limb rehabilitation device: a modular synthesis approach

ORCID Icon, &
Pages 139-153 | Received 14 Oct 2021, Accepted 21 Apr 2022, Published online: 12 May 2022

References

  • Platz T. Evidence-based arm rehabilitation-a systematic review of the literature. Nervenarzt. 2003;74(10):841–849.
  • Lum PS, Burgar CG, Shor PC, et al. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil. 2002;83(7):952–959.
  • Sørensen L, Månum G. A single-subject study of robotic upper limb training in the subacute phase for four persons with cervical spinal cord injury. Spinal Cord Ser Cases. 2019;5(1):29.
  • Gupta S, Agrawal A, Singla E. Wearable upper limb exoskeletons: generations, design challenges and task oriented synthesis. In: Rauter G, Cattin P, Zam A, Riener R, Carbone G, Pisla D, editors. New trends in medical and service robotics. Cham: Springer; 2019. p. 134–142.
  • Gupta S, Gupta S, Agrawal A, et al. A task-based dimensional synthesis of an upper-limb exoskeleton: a hybrid configuration. In: Kumar R, Chauhan VS, Talha M, Pathak H, editors. Machines, mechanism and robotics. Singapore: Springer; 2022. p. 1329–1336.
  • Ball SJ, Brown IE, Scott SH. Medarm: a rehabilitation robot with 5DOF at the shoulder complex. 2007 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. New York: IEEE; 2007. p. 1–6.
  • Mao Y, Agrawal SK. Design of a cable-driven arm exoskeleton (carex) for neural rehabilitation. IEEE Trans Robot. 2012;28(4):922–931.
  • Klamroth-Marganska V, Blanco J, Campen K, et al. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurol. 2014;13(2):159–166.
  • Brahmi B, Saad M, Brahmi A, et al. Compliant control for wearable exoskeleton robot based on human inverse kinematics. Int J Adv Rob Syst. 2018;15(6):172988141881213. 1729881418812133,
  • Zhang L, Li J, Su P, et al. Improvement of human–machine compatibility of upper-limb rehabilitation exoskeleton using passive joints. Rob Auton Syst. 2019;112:22–31.
  • Zhang L, Guo S, Sun Q. Development and assist-as-needed control of an end-effector upper limb rehabilitation robot. Applied Sciences. 2020;10(19):6684.
  • Aginaga J, Iriarte X, Plaza A, et al. Kinematic design of a new four degree-of-freedom parallel robot for knee rehabilitation. J Mech Des. 2018;140(9):092304.
  • Isaksson M. Kinematically redundant planar parallel mechanisms for optimal singularity avoidance. J Mech Des. 2017;139(4):042302.
  • Heidari O, Wolbrecht ET, Perez-Gracia A, et al. A task-based design methodology for robotic exoskeletons. J Rehabil Assist Technol Eng. 2018;5:2055668318800672.
  • Adhikari V, Yihun Y, Lankarani HM. Design of a novel task-based knee rehabilitation exoskeleton device. 2018 Design of Medical Devices Conference. New York: American Society of Mechanical Engineers Digital Collection; 2018.
  • Yihun Y, Adhikari V, Majidirad A, et al. Task-based knee rehabilitation with assist-as-needed control strategy and recovery tracking system. J Eng Sci Med Diagn Ther. 2020;3(2):20200501.
  • Thompson SB, Morgan M. Occupational therapy for stroke rehabilitation. New York: Springer; 2013.
  • O’Sullivan SB, Schmitz TJ, Fulk G. Physical rehabilitation. Philadelphia: FA Davis; 2019.
  • Yanjun L, Chang S-H, Francisco G, et al. Interaction force modeling for joint misalignment minimization toward bio-inspired knee exoskeleton design. 2018 Design of Medical Devices Conference. New York: American Society of Mechanical Engineers; 2018. p. V001T10A011–V001T10A011.
  • Li J, Cao Q, Zhang C, et al. Position solution of a novel four-dofs self-aligning exoskeleton mechanism for upper limb rehabilitation. Mech Mach Theory. 2019;141:14–39.
  • Gull MA, Thoegersen M, Bengtson SH, et al. A 4-dof upper limb exoskeleton for physical assistance: design, modeling, control and performance evaluation. Applied Sciences. 2021;11(13):5865.
  • Tanev TK. Kinematics of a hybrid (parallel–serial) robot manipulator. Mech Mach Theory. 2000;35(9):1183–1196.
  • Bertomeu JMB, Lois JMB, Guillem RB, et al. Development of a hinge compatible with the kinematics of the knee joint. Prosthet Orthot Int. 2007;31(4):371–383.
  • Ball SJ, Brown IE, Scott SH. Performance evaluation of a planar 3DOF robotic exoskeleton for motor assessment. J Med Devices. 2009;3(2):021002.
  • Kora K, Stinear J, McDaid A. Design, analysis, and optimization of an acute stroke gait rehabilitation device. J Med Devices. 2017;11(1):014503.
  • Zhang R, Zhu Y, Li H, et al. Development of a parallel-structured upper limb exoskeleton for lifting assistance. 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). New York: IEEE; 2019. p. 307–312.
  • Sahoo S, Jain A, Pratihar DK. Design and analysis of a novel lightweight, energy economic powered knee orthotic device. J Med Devices. 2019;13(3):031003.
  • Kim B, Deshpande AD. An upper-body rehabilitation exoskeleton harmony with an anatomical shoulder mechanism: design, modeling, control, and performance evaluation. Int J Robot Res. 2017;36(4):414–435.
  • Hou Y, Kiguchi K. Virtual tunnel generation algorithm for perception-assist with an upper-limb exoskeleton robot. 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS). New York: IEEE; 2018. p. 204–209.
  • Islam MR, Assad-Uz-Zaman M, Brahmi B, et al. Design and development of an upper limb rehabilitative robot with dual functionality. Micromachines. 2021;12(8):870.
  • Verdel D, Bastide S, Vignais N, et al. An identification-based method improving the transparency of a robotic upper limb exoskeleton. Robotica. 2021;39(9):1711–1728.
  • Gupta S, Gupta S, Agrawal A, et al. A novel modular approach for kinematic modelling and analysis of planar hybrid manipulators. J Mech Des. 2021;143(9):46.
  • Dasgupta B. Applied mathematical methods. New Delhi: Pearson Education India; 2006.
  • Holland JH. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Ann Arbor (MI): University of Michigan Press; 1975.
  • Michalewicz Z, Michalewicz Z. Genetic algorithms + data structures = evolution programs. Berlin; London: Springer Science & Business Media, 1996.
  • Deb K. Optimization for engineering design: algorithms and examples. New Delhi: PHI Learning Pvt. Ltd.; 2012.
  • Xu Y, Chen Y, Liu W, et al. Degree of freedom and dynamic analysis of the multi-loop coupled passive-input overconstrained deployable tetrahedral mechanisms for truss antennas. J Mech Rob. 2020;12(1):011010.
  • Cao W-A, Xi S, Ding H, et al. Design and kinematics of a novel double-ring truss deployable antenna mechanism. J Mech Des. 2021;1–14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.