466
Views
10
CrossRef citations to date
0
Altmetric
Original Research

Research of intent recognition in rehabilitation robots: a systematic review

, , & ORCID Icon
Pages 1307-1318 | Received 21 Mar 2022, Accepted 16 Jan 2023, Published online: 25 Jan 2023

References

  • Yang Z, Guo S, Liu Y, et al. An intention-based online bilateral training system for upper limb motor rehabilitation. Microsyst Technol. 2021;27(1):211–222.
  • Yang Q, Xie C, Tang R, et al. Hybrid active control with human intention detection of an upper-limb cable-driven rehabilitation robot. IEEE Access. 2020;8(1):195206–195215.
  • Tonin L, Millan J, del R. Noninvasive brain-machine interfaces for robotic devices. Annual review of control, robotics, and autonomous systems, vol 4, 2021; annual reviews. Palo Alto. 2021;4(2):191–214.
  • Deaconescu T, Deaconescu A. Pneumatic muscle actuated isokinetic equipment for the rehabilitation of patients with disabilities of the bearing joints. Imecs 2009: International Multi-Conference of Engineers and Computer Scientists, Vols I and II; Int Assoc Engineers-Iaeng: Hong Kong, 2009. 1823–1827.
  • Fazekas G. Robotics in rehabilitation: successes and expectations. Int J Rehabil Res. 2013;36(2):95–96.
  • Driessen BJF, Evers HG, V Woerden JA. Manus—a wheelchair-mounted rehabilitation robot. Proc Inst Mech Eng H. 2001;215(3):285–290.
  • Topping M, Smith J. The development of handy 1, a rehabilitation robotic system to assist the severely disabled. Ind Rob. 1998;25(5):316–320.
  • Topping M. An overview of the development of handy 1, a rehabilitation robot to assist the severely disabled. J Intell Rob Syst. 2002;34(3):253–263.
  • Krebs HI, Celestino J, Williams D, et al. A wrist extension for MIT-MANUS. Adv Rehabil Robot. 2004;306(2):377–390.
  • Zimmermann Y, Forino A, Riener R, et al. ANYexo: a versatile and dynamic upper-limb rehabilitation robot. IEEE Rob Autom Lett. 2019;4(4):3649–3656.
  • Frisoli A, Bergamasco M, Carboncini C, et al. Robotic assisted rehabilitation in virtual reality with the L-EXOS. Stud Health Technol Inform. 2009;145:40–54.
  • Frisoli A, Borelli L, Montagner A, et al. Arm rehabilitation with a robotic exoskeleleton in virtual reality. 2007 IEEE 10th International Conference on Rehabilitation Robotics. 2007. 2(3),631–642.
  • Nef T, Mihelj M, Riener R. ARMin: a robot for patient-cooperative arm therapy. Med Biol Eng Comput. 2007;45(9):887–900.
  • Mihelj M, Nef T, Riener R. ARMin II - 7 DoF rehabilitation robot: mechanics and kinematics. Proceedings 2007 IEEE International Conference on Robotics and Automation. 2007. 3(1),4120–4125.
  • Nef T, Guidali M, Riener R. ARMin III – arm therapy exoskeleton with an ergonomic shoulder actuation. Appl Bionics Biomech. 2009;6(2):127–142.
  • Perry JC, Rosen J, Burns S. Upper-limb powered exoskeleton design. IEEE/ASME Trans Mechatronics. 2007;12(4):408–417.
  • Galofaro E, D’Antonio E, Patane F. Three-dimensional assessment of upper limb proprioception via a wearable exoskeleton. Applied Sciences-Basel. 2021;11(6):1–12.
  • Balasubramanian S, Wei R, Perez M, et al. RUPERT: an exoskeleton robot for assisting rehabilitation of arm functions. 2008 Virtual Rehabilitation. 2008. 4(2),163–167.
  • Brookes J, Kuznecovs M, Kanakis M, et al. Robots testing robots: ALAN-Arm, a humanoid arm for the testing of robotic rehabilitation systems. 2017 International Conference on Rehabilitation Robotics (ICORR). 2017. 6(2),676–681.
  • Mao Y, Agrawal SK. Transition from mechanical arm to human arm with CAREX: a cable-driven ARm EXoskeleton (CAREX) for neural rehabilitation. 2012 Ieee International Conference on Robotics and Automation (ICRA).2012. 1(1) 2457–2462.
  • Gopura RARC, Kiguchi K, Li Y. SUEFUL-7: a 7DOF upper-limb exoskeleton robot with muscle-model-oriented emg-based control. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2009. 11(3),1126–1131.
  • Madani T, Daachi B, Djouani K. Modular-controller-design-based fast terminal sliding mode for articulated exoskeleton systems. IEEE Trans Control Syst Technol. 2017;25(3):1133–1140.
  • De Oliveira AC, Sulzer JS, Deshpande AD. Assessment of upper-extremity joint angles using harmony exoskeleton. IEEE Trans Neural Syst Rehabil Eng. 2021;29:916–925.
  • Oliveira AC, Warburton K, Yun Y, et al. Arm kinematics estimation with the harmony exoskeleton. 2017 International Symposium on Wearable Robotics and Rehabilitation (WEROB). 2017. 5(1), p. 47–48.
  • Vlachos E, Jochum E, Demers L-P. HEAT: the harmony exoskeleton self - assessment test. 2018 27th Ieee International Symposium on Robot and Human Interactive Communication (IEEE Ro-Man 2018). 2018. 12(2),577–582.
  • Ogden EM, Chiu D, Clearman R, et al. Evaluation of the harmony exoskeleton as an upper extremity rehabilitation tool after stroke 2017 International Symposium on Wearable Robotics and Rehabilitation (WEROB). 2017. 4(2), p. 38–39.
  • Rosati G, Gallina P, Masiero S. Design, implementation and clinical tests of a wire-based robot for neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007;15(4):560–569.
  • Stefano M, Patrizia P, Mario A, et al. Robotic upper limb rehabilitation after acute stroke by NeReBot: evaluation of treatment costs. Biomed Res Int. 2014, 2014;2014:265634.
  • Zheng J, Shi P, Fan M, et al. Effects of passive and active training modes of upper-limb rehabilitation robot on cortical activation: a functional near-infrared spectroscopy study. NeuroReport. 2021;32(6):479–488.
  • Hidler J, Wisman W, Neckel N. Kinematic trajectories while walking within the lokomat robotic gait-orthosis. Clin Biomech. 2008;23(10):1251–1259.
  • Lum PS, Burgar CG, Shor PC. Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Trans Neural Syst Rehabil Eng. 2004;12(2):186–194.
  • Lum PS, Burgar CG, Van der Loos M, et al. MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: a follow-up study. J Rehabil Res Dev. 2006;43(5):631–642.
  • Arz G, Toth A. REHAROB: a project and a system for motion diagnosis and robotized physiotherapy delivery. Integration of Assistive Technology in the Information Age. 2001;9(1):93–100.
  • Shi D, Zhang W, Zhang W, et al. A review on lower limb rehabilitation exoskeleton robots. Chin J Mech Eng. 2019;32(1):74.
  • Freivogel S, Mehrholz J, Husak-Sotomayor T, et al. Gait training with the newly developed ‘LokoHelp’-System is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain Inj. 2008;22(7-8):625–632.
  • Veneman JF, Kruidhof R, Hekman EEG, et al. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):379–386.
  • Meuleman J, van Asseldonk E, van Oort G, et al. LOPES II—design and evaluation of an admittance controlled gait training robot with shadow-leg approach. IEEE Trans Neural Syst Rehabil Eng. 2016;24(3):352–363.
  • Agrawal SK, Banala SK, Fattah A, et al. Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):410–420.
  • Jalgaonkar N, Kim A, Awtar S. Design of an ankle rehab robot with a compliant parallel kinematic mechanism. J Mech Rob. 2021;13(3):13.
  • Gomez-Vargas D, Pinto-Betnal MJ, Ballén-Moreno F, et al. Therapy with T-FLEX ankle-exoskeleton for motor recovery: a case study with a stroke survivor. 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob). 2020. 8(5),491–496.
  • Hidayah R, Bishop L, Jin X, et al. Gait adaptation using a cable-driven active leg exoskeleton (C-ALEX) with post-stroke participants. IEEE Trans Neural Syst Rehabil Eng. 2020;28(9):1984–1993.
  • Jin X, Cui X, Agrawal SK. Design of a cable-driven active leg exoskeleton (C-ALEX) and gait training experiments with human subjects. 2015 Ieee International Conference on Robotics and Automation (ICRA). 2015. 3(2), p. 5578–5583.
  • Girone M, Burdea G, Bouzit M, et al. A Stewart platform-based system for ankle telerehabilitation. Autonomous Robots. 2001;10(2):203–212.
  • Lim B, Jang J, Lee J, et al. Delayed output feedback control for gait assistance and resistance using a robotic exoskeleton. IEEE Rob Autom Lett. 2019;4(4):3521–3528.
  • Choi B, Lee Y, Lee J, et al. Development of adjustable knee assist device for wearable robot based on linkage and rolling joint. 2019 Ieee/Rsj International Conference on Intelligent Robots and Systems (IROS), 2019. 4043–4050.
  • Kai Y, Kaneta A, Ikeda K, et al. Development of a new compact and light velocity-based mechanical safety device for a rehabilitation assist suit. J. Adv. Mech. Des. Syst. Manuf. 2020;14(7):20–00212.
  • Agarwal P, Deshpande AD. Subject-specific assist-as-needed controllers for a hand exoskeleton for rehabilitation. IEEE Rob Autom Lett. 2018;3(1):508–515.
  • Zeilig G, Weingarden H, Zwecker M, et al. Safety and tolerance of the ReWalkTM exoskeleton suit for ambulation by people with complete spinal cord injury: a pilot study. Journ Spinal Cord Med. 2012;35(2):96–101.
  • Esquenazi A, Talaty M, Packel A, et al. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil. 2012;91(11):911–921.
  • Zoss AB, Kazerooni H, Chu A. Biomechanical Design of the berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans Mechatronics. 2006;11(2):128–138.
  • Kazerooni H. Human Augmentation and exoskeleton systems in berkeley. Int. J. Human. Robot. 2007;04(03):575–605.
  • Marconi D, Baldoni A, McKinney Z, et al. A Novel hand exoskeleton with series elastic actuation for modulated torque transfer. Mechatronics. 2019;61:69–82.
  • Bai S, Christensen S, Islam MRU. An upper-body exoskeleton with a novel shoulder mechanism for assistive applications 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 2017. p. 1041–1046.
  • Norris JA, Granata KP, Mitros MR, et al. Effect of augmented plantarflexion power on preferred walking speed and economy in young and older adults. Gait & Posture. 2007;25(4):620–627.
  • Bougrinat Y, Achiche S, Raison M. Design and development of a lightweight ankle exoskeleton for human walking augmentation. Mechatronics. 2019;64:102297.
  • Mooney LM, Herr HM. Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton. J Neuroeng Rehab. 2016;13:4.
  • Bianchi M, Cempini M, Conti R, et al. Design of a series elastic transmission for hand exoskeletons. Mechatronics. 2018;51:8–18.
  • Hadi A, Alipour K, Kazeminasab S, et al. ASR glove: a wearable glove for hand assistance and rehabilitation using shape memory alloys. J Intell Mater Syst Struct. 2018;29(8):1575–1585.
  • Guo Y, Xu F, Song Y, et al. A soft robotic glove for hand rehabilitation using pneumatic actuators with variable stiffness. J Intell Robot Syst. 2019;15(2):119–129.
  • Chen X, Gong L, Wei L, et al. A wearable hand rehabilitation system with soft gloves. IEEE Trans Ind Informat. 2021;17(2):943–952.
  • Awad LN, Esquenazi A, Francisco GE, et al. The ReWalk ReStore (TM) soft robotic exosuit: a multi-site clinical trial of the safety, reliability, and feasibility of exosuit-augmented post-stroke gait rehabilitation. j neuroeng rehab. 2020;17(1):80.
  • Bae J, Siviy C, Rouleau M, et al. A lightweight and efficient portable soft exosuit for paretic ankle assistance in walking After stroke 2018 IEEE International Conference on Robotics and Automation (ICRA). 2018. 2018:2820–2827.
  • Yurkewich A, Hebert D, Wang RH, et al. Hand extension robot orthosis (HERO) glove: development and testing with stroke survivors with severe hand impairment. IEEE Trans Neural Syst Rehabil Eng. 2019;27(5):916–926.
  • Schabowsky CN, Godfrey SB, Holley RJ, et al. Development and pilot testing of HEXORR: hand EXOskeleton rehabilitation robot. J NeuroEng Rehabil. 2010;7(1):36.
  • Varol HA, Sup F, Goldfarb M. Multiclass real-time intent recognition of a powered lower limb prosthesis. IEEE Trans Biomed Eng. 2010;57(3):542–551.
  • De Pauw K, Cherelle P, Roelands B, et al. The efficacy of the ankle mimicking prosthetic foot prototype 4.0 during walking: physiological determinants. Prosthet Orthot Int. 2018;42(5):504–510.
  • Cherelle P, Grosu V, Cestari M, et al. The AMP-Foot 3, new generation propulsive prosthetic feet with explosive motion characteristics: design and validation. Biomed Eng Online. 2016;15(Suppl 3):145.
  • Cherelle P, Grosu V, Matthys A, et al. Design and validation of the ankle mimicking prosthetic (AMP-) foot 2.0. IEEE Trans Neural Syst Rehabil Eng. 2014;22(1):138–148.
  • Young AJ, Simon AM, Fey NP, et al. Intent recognition in a powered lower limb prosthesis using time history information. Ann. Biomed. Eng. 2014;42(3):631–641.
  • Aghili F, Haghpanahi M. Use of a pattern recognition technique to control a multifunctional prosthesis. Med Biol Eng Comput. 1995;33(3 Spec No):504–508.
  • Su B-Y, Wang J, Liu S-Q, et al. A CNN-based method for intent recognition using inertial measurement units and intelligent lower limb prosthesis. IEEE Trans Neural Syst Rehabil Eng. 2019;27(5):1032–1042.
  • Simon AM, Ingraham KA, Spanias JA, et al. Delaying ambulation mode transition decisions improves accuracy of a flexible control system for powered knee-ankle prosthesis. IEEE Trans Neural Syst Rehabil Eng. 2017;25(8):1164–1171.
  • Rampichini S, Vieira TM, Castiglioni P, et al. Complexity analysis of surface electromyography for assessing the myoelectric manifestation of muscle fatigue: a review. Entropy. 2020;22(5):529.
  • Fleischer C, Hommel G. A human–exoskeleton interface utilizing electromyography. IEEE Trans Robot. 2008;24(4):872–882.
  • Buchanan TS, Lloyd DG, Manal K, et al. Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command. J Appl Biomech. 2004;20(4):367–395.
  • Hunt KJ, Munih M, Donaldson N, et al. Investigation of the hammerstein hypothesis in the modeling of electrically stimulated muscle. IEEE Trans Biomed Eng. 1998;45(8):998–1009.
  • Zhang F, Li P, Hou Z-G, et al. SEMG-based continuous estimation of joint angles of human legs by using BP neural network. Neurocomputing. 2012;78(1):139–148.
  • Jiang N, Vujaklija I, Rehbaum H, et al. Is accurate mapping of EMG signals on kinematics needed for precise online myoelectric control? IEEE Trans Neural Syst Rehabil Eng. 2014;22(3):549–558.
  • Li QL, Song Y, Hou ZG. Estimation of lower limb periodic motions from SEMG using least squares support vector regression. Neural Process Lett. 2015;41(3):371–388.
  • Adewuyi AA, Hargrove LJ, Kuiken TA. Evaluating EMG feature and classifier selection for application to partial-hand prosthesis control. Front Neurorobot. 2016;10(2):15–15.
  • Adewuyi AA, Hargrove LJ, Kuiken TA. Resolving the effect of wrist position on myoelectric pattern recognition control. J Neuroeng Rehab. 2017;14(1):39.
  • Adewuyi AA, Hargrove LJ, Kuiken TA. An analysis of intrinsic and extrinsic hand muscle EMG for improved pattern recognition control. IEEE Trans Neural Syst Rehabil Eng. 2016;24(4):485–494.
  • Watanabe H, Marushima A, Kadone H, et al. Effects of gait treatment with a single-leg hybrid assistive limb system after acute stroke: a non-randomized clinical trial. Front Neurosci. 2019;13(2):1389.
  • Tanaka H, Nankaku M, Nishikawa T, et al. Spatiotemporal gait characteristic changes with gait training using the hybrid assistive limb for chronic stroke patients. Gait & Posture. 2019;7(2):205–210.
  • Kawamoto H, Lee S, Kanbe S, et al. Power assist method for HAL-3 using EMG-based feedback controller. 2003 IEEE International Conference on Systems, Man and Cybernetics, Vols 1–5, Conference Proceedings. 2003. 5(2): 1648–1653.
  • McCabe JP, Henniger D, Perkins J, et al. Feasibility and clinical experience of implementing a myoelectric upper limb orthosis in the rehabilitation of chronic stroke patients: a clinical case series report. PLOS One. 2019;14(4):e0215311.
  • Kannape OA, Herr HM. Volitional control of ankle plantar flexion in a powered transtibial prosthesis during stair-ambulation. 2014 36th Annual International Conference of the Ieee Engineering in Medicine and Biology Society (EMBC). 2014. 2 (1):1662–1665.
  • Kannape OA, Herr HM. Split-belt adaptation and gait symmetry in transtibial amputees walking with a hybrid EMG controlled ankle-foot prosthesis. 2016 38th Annual International Conference of the Ieee Engineering in Medicine and Biology Society (EMBC). 2016. 3(4):5469–5472.
  • Wang J, Kannape OA, Herr HM. Proportional EMG control of ankle plantar flexion in a powered transtibial prosthesis. 2013 Ieee 13th international conference on rehabilitation robotics (ICORR). 2013;2013:1–5.
  • Au S, Berniker M, Herr H. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw. 2008;21(4):654–666.
  • Hargrove LJ, Simon AM, Lipschutz R, et al. Non-weight-bearing neural control of a powered transfemoral prosthesis. J Neuroeng Rehab. 2013;10(1):62.
  • Huang S, Wensman JP, Ferris DP. An experimental powered lower limb prosthesis using proportional myoelectric control. J Med Devices. 2014;8(2):285–294.
  • Huang S, Wensman JP, Ferris DP. Locomotor adaptation by transtibial amputees walking with an experimental powered prosthesis under continuous myoelectric control. IEEE Trans Neural Syst Rehabil Eng. 2016;24(5):573–581.
  • Chen B, Wang Q, Wang L. Adaptive slope walking with a robotic transtibial prosthesis based on volitional EMG control. IEEE/ASME Trans Mechatronics. 2015;20(5):2146–2157.
  • Chen B, Wang Q. Combining Human volitional control with intrinsic controller on robotic prosthesis: a case study on adaptive slope walking. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2015. 61(2):4777–4780.
  • Thatte N, Geyer H. Toward balance recovery with leg prostheses using neuromuscular model control. IEEE Trans Biomed Eng. 2016;63(5):904–913.
  • Thatte N, Geyer H. Towards local reflexive control of a powered transfemoral prosthesis for robust amputee push and trip recovery. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2014. 5(4): 2069–2074.
  • Zhang C, Ai Q, Meng W, et al. A subject-specific EMG-driven musculoskeletal model for the estimation of moments in ankle plantar-dorsiflexion movement. NeuralIPS. 2017;61(3):685–693.
  • Ghazaei G, Alameer A, Degenaar P, et al. Deep learning-based artificial vision for grasp classification in myoelectric hands. J. Neural Eng. 2017;14(3):25–36.
  • Zhan G, Chen S, Ji Y, et al. EEG-based brain network analysis of chronic stroke patients after BCI rehabilitation training. Front Hum Neurosci. 2022;16:1-16.
  • Pfurtscheller G, Aranibar A. Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalogr Clin Neurophysiol. 1979;46(2):138–146.
  • Chapin JK, Moxon KA, Markowitz RS, et al. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci. 1999;2(7):664–670.
  • Daly JJ, Wolpaw JR. Brain–computer interfaces in neurological rehabilitation. Lancet Neurol. 2008;7(11):1032–1043.
  • Donati ARC, Shokur S, Morya E, et al. Long-term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Sci Rep. 2016;6(1):30383.
  • Kalcher J, Flotzinger D, Pfurtscheller G. A new approach to a brain–computer-interface (BCI) based on learning vector quantization (LVQ3). 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 1992. 4 (4):1658–1659.
  • Roberts SJ, Penny WD. Real-time brain–computer interfacing: a preliminary study using bayesian learning. Med Biol Eng Comput. 2000;38(1):56–61.
  • Pfurtscheller G, Flotzinger D, Kalcher J. Brain–computer interface—a new communication device for handicapped persons. J Microcomput Appl. 1993;16(3):293–299.
  • Antelis JM, Gudiño-Mendoza B, Falcón LE, et al. Dendrite morphological neural networks for motor task recognition from electroencephalographic signals. Biomed Signal Process Control. 2018;44:12–24.
  • Frisoli A, Loconsole C, Leonardis D, et al. A new gaze-bci-driven control of an upper limb exoskeleton for rehabilitation in real-world tasks. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews). 2012;42(6):1169–1179.
  • Mueller-Putz G, Scherer R, Pfurtscheller G, et al. Temporal coding of brain patterns for direct limb control in humans. Front Neurosci. 2010;4:34.
  • Lotze M, Braun C, Birbaumer N, et al. Motor learning elicited by voluntary drive. Brain. 2003;126(Pt 4):866–872.
  • Fragkiadaki K, Levine S, Felsen P, et al. Recurrent network models for human dynamics. 2015 IEEE International Conference on Computer Vision (ICCV). 2015. 3 (2):4346–4354.
  • Zunino A, Cavazza J, Koul A, et al. Predicting human intentions from motion cues only: a 2D + 3D fusion approach. Proceedings of the 25th ACM international conference on Multimedia. 2017. 6 (4):591–599.
  • Liu R, Liu C. Human motion prediction using adaptable recurrent neural networks and inverse kinematics. 2021 American Control Conference (ACC). 2021;3(4):3725–3730.
  • Cavallo A, Koul A, Ansuini C, et al. Decoding intentions from movement kinematics. Sci Rep. 2016;6(1):37036.
  • Wei P, Xie R, Tang R, et al. SEMG-based gait phase recognition for children with spastic cerebral palsy. Ann Biomed Eng. 2019;47(1):223–230.
  • Duan F, Dai L. Recognizing the gradual changes in SEMG characteristics based on incremental learning of wavelet neural network ensemble. IEEE Trans Ind Electron. 2017;64(5):4276–4286.
  • Duan F, Dai L, Chang W, et al. SEMG-based identification of hand motion commands using wavelet neural network combined with discrete wavelet transform. IEEE Trans Ind Electron. 2016;63(3):1923–1934.
  • Sun X, Zhang X, Lu Z, et al. SEMG-based continuous estimation of wrist joint angle using BP neural network In 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), 2019. 63 (3), p. 221–225.
  • Manal K, Gonzalez RV, Lloyd DG, et al. A Real-time EMG-driven virtual arm. Comput Biol Med. 2002;32(1):25–36.
  • Liu M, Peng B, Shang M. Lower limb movement intention recognition for rehabilitation robot aided with projected recurrent neural network. Complex Intell. Syst. 2021;4(1):23–29.
  • Xu D, Wu Q, Zhu Y. Development of a SEMG-based joint torque estimation strategy using hill-type muscle model and neural network. J. Med. Biol. Eng. 2021;41(1):34–44.
  • Perreault EJ, Sandercock TG, Heckman CJ. Hill muscle model performance during natural activation and electrical stimulation. 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2001.2: 1248–1251.
  • Venture G, Yamane K, Nakamura Y. Identifying musculo-tendon parameters of human body based on the musculo-skeletal dynamics computation and Hill-Stroeve muscle model. 2005 5th Ieee-Ras International Conference on Humanoid Robots. 2005. 5:351–356.
  • Stamatescu G, White LB, Bruce-Doust R. Track extraction with hidden reciprocal chains. IEEE Trans Autom Control. 2018;63(4):1097–1104.
  • Ding QC, Xiong AB, Zhao XG, et al. A Novel EMG-Driven state space model for the estimation of continuous joint movements 2011 IEEE International Conference on Systems, Man, and Cybernetics, 2011. p. 2891–2897.
  • Han J, Ding Q, Xiong A, et al. A state-space EMG model for the estimation of continuous joint movements. IEEE Trans Ind Electron. 2015;62(7):4267–4275.
  • Tsinganos P, Cornelis B, Cornelis J, et al Improved gesture recognition based on SEMG signals and TCN. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019.2019:1169–1173.
  • Xia P, Hu J, Peng Y. EMG-based estimation of limb movement using deep learning with recurrent convolutional neural networks. Artif Organs. 2018;42(5):E67–E77.
  • Boonstra T. The potential of corticomuscular and intermuscular coherence for research on human motor control. Front Hum Neurosci. 2013;7:1–2.
  • Guo Z, Zhou S, Ji K, et al. Corticomuscular integrated representation of voluntary motor effort in robotic control for wrist-hand rehabilitation after stroke. J. Neural Eng. 2022;19(2):026004.
  • Mrachacz-Kersting N, Jiang N, Stevenson AJT, et al. Efficient neuroplasticity induction in chronic stroke patients by an associative brain–computer interface. J Neurophysiol. 2016;115(3):1410–1421.
  • Ge S, Wang R, Leng Y, et al. A double-partial least-squares model for the detection of steady-state visual evoked potentials. IEEE J Biomed Health Inform. 2017;21(4):897–903.
  • Leeb R, Lee F, Keinrath C, et al. Brain–computer communication: motivation, aim, and impact of exploring a virtual apartment. IEEE Trans Neural Syst Rehabil Eng. 2007;15(4):473–482.
  • Kiguchi K, Lalitharatne TD, Hayashi Y. Estimation of forearm supination/pronation motion based on EEG signals to control an artificial arm. JAdv Mech Des, Syst Manuf. 2013;7(1):74–81.
  • Kiguchi K, Hayashi Y. Motion estimation based on EMG and EEG signals to control wearable robots. 2013 IEEE International Conference on Systems, Man, and Cybernetics2013. p. 4213–4218.
  • Shafiul Hasan SM, Siddiquee MR, Atri R, et al. Prediction of gait intention from pre-movement EEG signals: a feasibility study. J Neuroeng Rehab. 2020;17(1):50.
  • Yang D, Nguyen T-H, Chung W-Y. A synchronized hybrid brain-computer interface system for simultaneous detection and classification of fusion EEG signals. Complexity. 2020; e4137283:1-11.
  • Sivasankari K, Thanushkodi K. An improved EEG signal classification using neural network with the consequence of Ica and STFT. J Electr Eng Technol. 2014;9(3):1060–1071.
  • Lemm S, Blankertz B, Curio G, et al. Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans Biomed Eng. 2005;52(9):1541–1548.
  • Wang W, Zhang J, Wang X, et al. Motion intensity modeling and trajectory control of upper limb rehabilitation exoskeleton robot based on multi-modal information. Complex Intell. Syst. 2022;8(3):2091–2103.
  • Wendong W, Hanhao L, Menghan X, et al. Design and verification of a human–robot interaction system for upper limb exoskeleton rehabilitation. Med Eng Phys. 2020;79:19–25.
  • Colamarino E, de Seta V, Masciullo M, et al. Corticomuscular and intermuscular coupling in simple hand movements to enable a hybrid brain–computer interface. Int. J. Neur. Syst. 2021;31(11):2150052.
  • Kitisomprayoonkul W, Bhodhiassana P, Sangveraphunsiri V. Upper extremity training with CUREs robot in subacute stroke: a pilot study. In Converging Clinical and Engineering Research on Neurorehabilitation II. 2017;10(2):317–322.
  • Zheng E, Chen B, Wei K, et al. Lower limb wearable capacitive sensing and its applications to recognizing human gaits. Sensors. 2013;13(10):13334–13355.
  • Zheng E, Wang L, Wei K, et al. A noncontact capacitive sensing system for recognizing locomotion modes of transtibial amputees. IEEE Trans Biomed Eng. 2014;61(12):2911–2920.
  • Chen B, Zheng E, Wang Q. A locomotion intent prediction system based on multi-sensor fusion. Sensors. 2014;14(7):12349–12369.
  • Park U, Mallipeddi R, Lee M. Human implicit intent discrimination using EEG and eye movement. Neural Information Processing. 2014;7(3):11–18.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.