855
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Towards E-textiles in augmentative and alternative communication – user scenarios developed by speech and language therapists

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1626-1636 | Received 25 Nov 2022, Accepted 10 Jun 2023, Published online: 04 Jul 2023

References

  • Beukelman DR, Light J. Augmentative & alternative communication:supporting children and adults with complex communication needs. 5th ed. Baltimore (MA): Paul H. Brookes Publishing Co.; 2020.
  • Creer S, Enderby P, Judge S, et al. Research report prevalence of people who could benefit from augmentative and alternative communication (AAC) in the UK: determining the need. Int J Lang Commun Disord. 2016;51(6):639–653. doi: 10.1111/1460-6984.12235.
  • Morin KL, Ganz JB, Gregori EV, et al. A systematic quality review of high-tech AAC interventions as an evidence-based practice. Augment Altern Commun. 2018;34(2):104–117. doi: 10.1080/07434618.2018.1458900.
  • Ganz JB, Morin KL, Foster MJ, et al. High-technology augmentative and alternative communication for individuals with intellectual and developmental disabilities and complex communication needs: a meta-analysis. Augment Altern Commun. 2017;33(4):224–238. doi: 10.1080/07434618.2017.1373855.
  • McNaughton D, Light J. The iPad and mobile technology revolution: benefits and challenges for individuals who require augmentative and alternative communication. Augment Altern Commun. 2013;29(2):107–116. doi: 10.3109/07434618.2013.784930.
  • Stancliffe RJ, Larson S, Auerbach K, et al. Individuals with intellectual disabilities and augmentative and alternative communication: analysis of survey data on uptake of aided AAC, and loneliness experiences. Augment Altern Commun. 2010;26(2):87–96. doi: 10.3109/07434618.2010.481564.
  • Iacono T, Douglas SN, Garcia-Melgar A, et al. In press). a scoping review of AAC research conducted in segregated school settings. Res Dev Disabil. 2022;120(1):104141. doi: 10.1016/j.ridd.2021.104141.
  • Hodge S. Why is the potential of augmentative and alternative communication not being realized? Exploring the experiences of people who use communication aids. Disabil Soc. 2007;22(5):457–471. doi: 10.1080/09687590701427552.
  • Baxter S, Enderby P, Evans P, et al. Interventions using high-technology communication devices: a state of the art review. Folia Phoniatr Logop. 2012;64(3):137–144. doi: 10.1159/000338250.
  • Donato C, Spencer E, Arthur-Kelly M. A critical synthesis of barriers and facilitators to the use of AAC by children with autism spectrum disorder and their communication partners. Augment Altern Commun. 2018;34(3):242–253. doi: 10.1080/07434618.2018.1493141.
  • Elsahar Y, Hu S, Bouazza-Marouf K, et al. Augmentative and alternative communication (AAC) advances: a review of configurations for individuals with a speech disability. Sensors. 2019;19(8):1911. doi: 10.3390/s19081911.
  • Johnson JM, Inglebret E, Jones C, et al. Perspectives of speech language pathologists regarding success versus abandonment of AAC. Augment Altern Commun. 2006;22(2):85–99. doi: 10.1080/07434610500483588.
  • Moorcroft A, Scarinci N, Meyer C. A systematic review of the barriers and facilitators to the provision and use of low-tech and unaided AAC systems for people with complex communication needs and their families. Disabil Rehabil Assist Technol. 2019;14(7):710–731. doi: 10.1080/17483107.2018.1499135.
  • McNaughton D, Bryen D, Blackstone S, et al. Young adults with complex communication needs: research and development in AAC for a “diverse” population. Assist Technol. 2011;24(1):45–53. doi: 10.1080/10400435.2011.648715.
  • Myrden A, Schudlo L, Weyand S, et al. Trends in communicative access solutions for children with cerebral palsy. J Child Neurol. 2014;29(8):1108–1118.   doi: 10.1177/0883073814534320.
  • Fager SK, Fried-Oken M, Jakobs T, et al. New and emerging technologies for adults with complex communication needs and severe motor impairments: state of the science. Augment Altern Commun. 2019;35(1):13–25. doi: 10.1080/07434618.2018.1556730.
  • Light J, McNaughton D, Caron J. New and emerging AAC technology supports for children with complex communication needs and their communication partners: state of the science and future research directions. Augment Altern Commun. 2019;35(1):26–41. doi: 10.1080/07434618.2018.1557251.
  • Light J, McNaughton D, Beukelman D, et al. Challenges and opportunities in augmentative and alternative communication: research and technology development to enhance communication and participation for individuals with complex communication needs. Augment Altern Commun. 2019;35(1):1–12. doi: 10.1080/07434618.2018.1556732.
  • Marculescu D, Marculescu R, Zamora NH, et al. Electronic textiles: a platform for pervasive computing. Proc. IEEE. 2003;91(12):1995–2018. doi: 10.1109/JPROC.2003.819612.
  • Dunn J, Runge R, Snyder M. Wearables and the medical revolution. Per Med. 2018;15(5):429–448. doi: 10.2217/pme-2018-0044.
  • Seneviratne S, Hu Y, Nguyen T, et al. A survey of wearable devices and challenges. IEEE Commun. Surv. Tutorials. 2017;19(4):2573–2620. doi: 10.1109/COMST.2017.2731979.
  • Radostina AA, Sofronova D. E-textile for non-invasive control of the body movement of bedridden patients. IOP Conf Ser Mater Sci Eng. 2021;1031(1):5. doi: 10.1088/1757-899X/1031/1/012029.
  • Sequeira L, Perrotta S, LaGrassa J, et al. Mobile and wearable technology for monitoring depressive symptoms in children and adolescents: a scoping review. J Affect Disord. 2020;265:314–324. doi: 10.1016/j.jad.2019.11.156.
  • Fernández-Caramés TM, Fraga-Lamas P. Towards the internet of smart clothing: a review on IoT wearables and garments for creating intelligent connected e-textiles. Electronics. 2018;7(12):405. doi: 10.3390/electronics7120405.
  • Elo C, Rauhala EM, Ihalainen T, et al. E-textiles assisting healthcare, rehabilitation, and well-being—to whom, for what, and how?Proceedings of 10th International Conference on Serious Games and Applications for Health (IEEE SEGAH 2022), Sydney, Australia Augustp. 10–12. Forthcoming.
  • Ahmed M, Zaidan B, Zaidan A, et al. A review on systems-based sensory gloves for sign language recognition state of the art between 2007 and 2017. Sensors. 2018;18(7):2208. doi: 10.3390/s18072208.
  • Theil A, Buchweitz L, Gay J, et al. Tactile board: a multimodal augmentative and alternative communication device for individuals with deafblindness. In: Cauchard J, Löchtefeld M, editors. Proceedings on the 19th International Conference on Mobile and Ubiquitous Multimedia (MUM 2020); 2020 Nov 22–25; Essen, Germany. New York (NY): ACM; 2020. p. 223–228. doi: 10.1145/3428361.3428465.
  • Fleury A, Wu G, Chau T. A wearable fabric-based speech-generating device: system design and case demonstration. Disabil Rehabil Assist Technol. 2019;14(5):434–444. doi: 10.1080/17483107.2018.1462860.
  • Pantelopoulos A, Bourbakis N. A survey on wearable biosensor systems for health monitoring Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EBMC’08); 2008 Aug 20–24; Vancouver, Canada. Los Alamitos (CA): IEEE Press; 2008. p. 4887–4890. doi: 10.1109/IEMBS.2008.4650309.
  • Mehmood A, Han H, Chen X, et al. Development, fabrication and evaluation of passive interface gloves. Text Res J. 2021;91(23–24):3023–3032. doi: 10.1177/00405175211019132.
  • Vihriӓlӓ T, Leino M, Merilampi S, et al. Wireless communication textile based on passive UHF RFID. In: chew WC, He S. editors. Proceedings of the 2021 Photonics & Electromagnetics Research Symposium (PIERS 2021); 2021 Nov 21–25, Hangzhou, China. New York (NY): IEEE; 2021. p. 1613–1619. doi: 10.1109/PIERS53385.2021.9694939.
  • Lubas M, Mitchell J, De Leo G. User-centered design and augmentative and alternative communication apps for children with autism spectrum disorders. SAGE Open. 2014;4(2):215824401453750. doi: 10.1177/2158244014537501.
  • Shah SGS, Robinson I, Al Shawi S. Developing medical device technologies from users’ perspectives: a theoretical framework for involving users in the development process. Int J Technol Assess Health Care. 2009;25(4):514–521. doi: 10.1017/S0266462309990328.
  • Costigan FA, Light J. A review of preservice training in augmentative and alternative communication for speech-language pathologists, special education teachers, and occupational therapists. Assist Technol. 2010;22(4):200–212. doi: 10.1080/10400435.2010.492774.
  • Vihriӓlӓ TA, Ihalainen T, Elo C, et al. Possibilities of intelligent textiles in AAC – perspectives of speech and language therapists. Disabil Rehabil Assist Technol. 2022; 1–13. doi: 10.1080/17483107.2022.2141900.
  • Guest G, MacQueen KM, Namey EE. Applied thematic analysis. Thousand Oaks (CA): SAGE; 2012.
  • Breen RL. A practical guide to focus-group research. J Geogr High Educ. 2006;30(3):463–475. doi: 10.1080/03098260600927575.
  • Boster JB, McCarthy JW. Designing augmentative and alternative communication applications: the results of focus groups with speech-language pathologists and parents of children with autism spectrum disorder. Disabil Rehabil Assist Technol. 2018;13(4):353–365. doi: 10.1080/17483107.2017.1324526.
  • Owens JS. Accessible information for people with complex communication needs. Augment Altern Commun. 2006;22(3):196–208. doi: 10.1080/07434610600649971.
  • Hamilton P. The workshop book. How to design and lead successful workshops. Harlow (UK): Pearson Education; 2016.
  • Carroll JM. Five reasons for scenario-based design. Interact Comput. 2000;13(1):43–60. doi: 10.1016/S0953-5438(00)00023-0.
  • Benyon D, Macaulay C. Scenarios and the HCI-SE design problem. Interact Comput. 2002;14(4):397–405. doi: 10.1016/S0953-5438(02)00007-3.
  • Benyon D, Turner P, Turner SE. Designing interactive systems: people, activities, context, technologies. Essex (UK): Pearson Education Ltd; 2005.
  • Cresswell JW, Plano Clark VL. Designing and conducting mixed method research. 2nd ed. Thousand Oaks (CA): SAGE; 2011.
  • Hamdan NA, Kosuru R, Corsten C, et al. Run&tap: investigation of on-body tapping for runners. In: Proceedings of the 2017 ACM International Conference on Interactive Surfaces and Spaces (ISS’17); 2017 Oct 17–20; Brighton, United Kingdom. New York (NY): ACM, 2017. p. 280–286.
  • Weigel M, Nittala AS, Olwal A, et al. SkinMarks: enabling interactions on body landmarks using conformal skin electronics.Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI’17); 2017 May 6–11; Denver, CO. New York (NY): ACM, 2017. p. 3095–3105.
  • Poupyrev I, Gong NW, Shiho Fukuhara S, et al. Project jacquard: interactive digital textiles at scale. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI’16); 2016 May 7–12; San Jose, CA. New York (NY): ACM, 2016. p. 4216–4227.
  • Parzer P, Sharma A, Vogl A, et al. SmartSleeve: real-time sensing of surface and deformation gestures on flexible, interactive textiles, using a hybrid gesture detection pipeline Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology (UIST’17); 2017 Oct 22–25; Québec City, Canada. New York (NY): ACM, 2017. p. 565–577.
  • Morris JT, Jones M, Sweatman M. Wireless technology use by people with disabilities: a national survey. J. Technol. Pers. Disabil. 2016;4:101–113.
  • Shane HC, Blackstone S, Vanderheiden G, et al. Using AAC technology to access the world. Assist Technol. 2011;24(1):3–13. doi: 10.1080/10400435.2011.648716.
  • Eady I, Wilson JD. The influence of music on core learning. Education. 2004;125(2):243–248.
  • Alluri V, Toiviainen P, Jääskeläinen IP, et al. Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm. NeuroImage. 2012;59(4):3677–3689. doi: 10.1016/j.neuroimage.2011.11.019.
  • Stegemann T, Geretsegger M, Quoc EP, et al. Music therapy and other music-based interventions in pediatric health care: an overview. Medicines. 2019;6(1):25. doi: 10.3390/medicines6010025.
  • Tam C, Schwellnus H, Eaton C, et al. Movement-to-music computer technology: a developmental play experience for children with severe physical disabilities. Occup Ther Int. 2007;14(2):99–112. doi: 10.1002/oti.227.
  • Gorman M, Lahav A, Saltzman E, et al. A camera-based music-making tool for physical rehabilitation. Comput Music J. 2007;31(2):39–53. doi: 10.1162/comj.2007.31.2.39.
  • DrumPants – Make beats anywhere with wearable triggers! [Internet]. DrumPants Inc. [updated 2022 Feb 13; cited 2022 Nov 25]. Available from: http://www.drumpants.com.
  • Shaikh A, Vianto A, Jabari S, et al. Design and evaluation of passive RFID-based music player textile prototypes. IEEE J. Radio Freq. Identif. 2022;6:622–628. doi: 10.1109/JRFID.2022.3199887.
  • Sipilӓ E, Rauhala EL, Elo C, et al. Technology-related challenges in smart clothing – viewpoints from ideation workshops. Proceedings of the IEEE 9th International Conference on Serious Games and Applications for Health (SeGAH 2021); 2021 Aug 4-6, Dubai, United Arab Emirates. New York (NY): IEEE, 2021. p. 216–222. doi: 10.1109/SEGAH52098.2021.9551863.
  • Gonçalves C, da Silva AF, Gomes J, et al. Wearable e-textile technologies: a review on sensors, actuators and control elements. Inventions. 2018;3(1):14. doi: 10.3390/inventions3010014.
  • Frydrysiak M. Comparison of textile resistive humidity sensors made by sputtering, printing and embroidery techniques. FIBRES & TEXTILES in Eastern Europe. 2020;28(5(143):91–96. doi: 10.5604/01.3001.0014.2391.
  • Martinez-Estrada M, Moradi B, Fernández-Garcia R, et al. Impact of manufacturing variability and washing on embroidery textile sensors. Sensors. 2018;18(11):3824–3828 doi: 10.3390/s18113824.
  • Yong S, Shi J, Beeby S. Wearable textile power module based on flexible ferroelectret and supercapacitor. Energy Technol. 2019;7(5):1800938. pages doi: 10.1002/ente.201800938.
  • Wagih M, Komolafe A, Zaghari B. Dual-receiver wearable 6.78 MHz resonant inductive wireless power transfer glove using embroidered textile coils. IEEE Access. 2020;8:24630–24642. doi: 10.1109/ACCESS.2020.2971086.
  • Wagih M, Hillier N, Yong S, et al. RF-powered wearable energy harvesting and storage module based on e-textile coplanar waveguide rectenna and supercapacitor. IEEE Open J. Antennas Propag. 2021;2:302–314. doi: 10.1109/OJAP.2021.3059501.
  • Chen X, He H, Khan Z, et al. Textile-based batteryless moisture sensor. Antennas Wirel. Propag. Lett. 2020;19(1):198–202. doi: 10.1109/LAWP.2019.2957879.
  • He H, Chen X, Mehmood A, et al. ClothFace: a batteryless RFID-based textile platform for handwriting recognition. Sensors. 2020;20(17):4878. doi: 10.3390/s20174878.
  • Davis AB, Moore MM, Storey VC. Context-aware communication for severely disabled users. Proceedings of the 2003 Conference on Universal Usability (CUU’03); 2003 Nov 10–11; Vancouver, Canada. New York (NY): ACM; 2003. p. 106–111.
  • Wang Q, Zhao J, Xu S, et al. ExHIBit: breath-based augmentative and alternative communication solution using commercial RFID devices. Inf. Sci. 2022;608:28–46. doi: 10.1016/j.ins.2022.06.066.
  • Hennink MM, Kaiser BN, Weber MB. What influences saturation? Estimating sample sizes in focus group research. Qual Health Res. 2019;29(10):1483–1496. doi: 10.1177/1049732318821692.
  • Beneteau E. Who are you asking? Qualitative methods for involving AAC users as primary research participants. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (CHI’20); 2020 April 15–30; Honolulu, HI. New York (NY): ACM; 2020. p. 1–13.