141
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Survey and analysis of the current status of research in the field of outdoor navigation for the blind

, &
Pages 1657-1675 | Received 26 Jul 2022, Accepted 13 Jun 2023, Published online: 04 Jul 2023

References

  • World Health Organization. World report on vision. Vol. 214. World Health Organization; 2019. p. 1–160.
  • Luobin P, Mingxia L. Research on urban blind road governance based on public governance theory. Legal Syst Soc. 2021;4:145–146.
  • Chen C. Analysis of urban accessibility problems and improvement strategies in the context of population aging: the current situation of blind lane construction in Suzhou city as an example. Beauty Times. 2019;(5):65–66.
  • Weijing L, Ying H, Ping W, et al. The optimal design and research of blind sidewalks in Changsha. Chinese Overseas Archit. 2017;11:129–131.
  • Cunge G. Analysis of problems and suggestions for solving the current situation of urban blind design. Beauty Times. 2015;(9):46–47.
  • Hu Xuefeng X, Jing W, Xingping C, et al. Study on spatial mismatch and majorization of barrier-free facilities for urban community: a case study of Nanjing. Disabil Res. 2019;(3):63–70.
  • Wang X. Blind way recognition system design base on RFID. Chengdu University of Technology; 2009;1-61.
  • Zhu T, Wang B. On disability, accessibility and assistive devices. Disabil Res. 2016;3:37–42.
  • Bo W. Research on barrier-free environment construction in Beijing and countermeasures. Beijing University of Architecture; 2017;1-69.
  • Yue W, Ge G, Mengzhu W, et al. Survey and analysis of the application situation of urban barrier-free facilities (tactile ground surface indicator). Chinese J Tissue Eng Res. 2020;24(2):271–275.
  • Xiangcheng Z, Yaxia L, Xiaoxiao Z, et al. Design of auxiliary clothing for the blind based on obstacle detection. Wool Text J. 2020;48(11):63–67.
  • Gallo S, Chapuis D, Santos-Carreras L, et al. Augmented white cane with multimodal haptic feedback. 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics; 2010. p. 149–155.
  • Keli F. The history and current status of O&M for the blind. Chinese J Rehabil Theory Pract. 2003;9(2):125–126.
  • Ruifeng L, Kun L, Jianing W, et al. A pilot study on the market and feasibility of travel products for the blind. Consum Electron Mag. 2020;2:36–81.
  • Jiangang M. Research on high-accuracy blind navigation key issues based on haptic and spatial cognition. Xinjiang University; 2017;1-75.
  • Brunet L, Darses F, Auvray M. Strategies and needs of blind pedestrians during urban navigation. Trav Hum. 2018; 81(2):141–171. doi: 10.3917/th.812.0141.
  • Syed Rizal Alfam Wan A, Mohamad Noh A. Survey on outdoor navigation system needs for blind people. 2013 IEEE Student Conference on Research and Development (SCOReD). IEEE; 2013. p. 144–148.
  • Wu T. Research on object detection and tracking of outdoor blind sidewalk obstacles based on deep learning. Ganzhou: Jiangxi University of Science and Technology; 2020.
  • Mack K, McDonnell E, Jain D, et al. What do we mean by “accessibility research”? 2021:1–18.
  • Bhowmick A, Hazarika SM. An insight into assistive technology for the visually impaired and blind people: state-of-the-art and future trends. J Multimodal User Interfaces. 2017;11(2):149–172. doi: 10.1007/s12193-016-0235-6.
  • Kuriakose B, Shrestha R, Sandnes FE. Tools and technologies for blind and visually impaired navigation support: a review. IETE Tech Rev. 2022;39(1):3–18. doi: 10.1080/02564602.2020.1819893.
  • Fernandes H, Costa P, Filipe V, et al. A review of assistive spatial orientation and navigation technologies for the visually impaired. Univ Access Inf Soc. 2019;18(1):155–168. doi: 10.1007/s10209-017-0570-8.
  • Wu Z, Rong X, Fan Y, et al. A review of the current state of research on guide robots for the blind. Comput Eng Appl. 2020;56(14):1–13.
  • Hanlin C. Research on guiding aids for the blind based on deep learning image recognition. Peak Data Sci. 2020;9(7):242.
  • Guansheng W, Jianghua Z, Halik W, et al. Overview on research and application of navigation/route guidance assistive devices for the blind. Comput Appl Softw. 2012;29(12):147–151.
  • Dakopoulos D, Bourbakis NG. Wearable obstacle avoidance electronic travel aids for blind: a survey. IEEE Trans Syst Man Cybern C. 2010;40(1):25–35. doi: 10.1109/TSMCC.2009.2021255.
  • Tapu R, Mocanu B, Tapu E. A survey on wearable devices used to assist the visual impaired user navigation in outdoor environments. 2014 11th International Symposium on Electronics and Telecommunications, ISETC; 2015.
  • Anandan M, Manikandan M, Karthick T. Advanced indoor and outdoor navigation system for blind people using raspberry-PI. J Internet Technol. 2020;21(1):183–195.
  • El-Taher FE, Zahraa Taha A, Courtney J, et al. A systematic review of urban navigation systems for visually impaired people. 2021:1–35.
  • Khan S, Nazir S, Khan HU. Analysis of navigation assistants for blind and visually impaired people: a systematic review. IEEE Access; 2020:26712-26734.
  • Horton EL, Renganathan R, Toth BN, et al. A review of principles in design and usability testing of tactile technology for individuals with visual impairments. Assist Technol. 2017;29(1):28–36. doi: 10.1080/10400435.2016.1176083.
  • Khan I, Khusro S, Ullah I. Technology-assisted white cane: evaluation and future directions. PeerJ. 2018;6:e6058. doi: 10.7717/peerj.6058.
  • Prandi C, Barricelli BR, Mirri S, et al. Accessible wayfinding and navigation: a systematic mapping study. Univ Access Inf Soc. 2021;22:185–212.
  • Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLOS Med. 2009;6(7):e1000097. doi: 10.1371/journal.pmed.1000097.
  • Fernando N, McMeekin DA, Murray I. Route planning methods in indoor navigation tools for vision impaired persons: a systematic review. Disabil Rehabil Assistive Technol. 2021;1–20. doi: 10.1080/17483107.2021.1922522.
  • Chen Xiaomeng LM. The current development of orientation and mobility aids for hearing-impaired persons. Chinese J Spec Educ. 2017;(9):12–20.
  • Hersh MA, Johnson MA. A robotic guide for blind people. Part 1. A multi-national survey of the attitudes, requirements and preferences of potential end-users. Appl Bionics Biomech. 2010;7(4):277–288. doi: 10.1155/2010/252609.
  • Lakshmanan A, Devi, SG, Nisha, Mm. Dhanalakshmi devices and networking MBTI conference on communication. Outdoor obstacle detection module to assist visually challenged. International Conference on Communication, Devices and Networking; 2019.
  • Velázquez R, Pissaloux EE, Guinot JC, et al. Walking using touch: design and preliminary prototype of a non-invasive ETA for the visually impaired. Annual International Conference of the IEEE Engineering in Medicine and Biology–Proceedings; Vol. 7; 2005. p. 6821–6824.
  • Karacs K, Lázár A, Wagner R, et al. Bionic eyeglass: the first prototype a personal navigation device for visually impaired–a review. 2008 First International Symposium on Applied Sciences on Biomedical and Communication Technologies; 2008. p. 1–5.
  • Karacs K, Kusnyerik A, Radvanyi M, et al. Towards a mobile navigation device. In: Karacs K, Kusnyerik A, Radvanyi M, Roska T, Szuhaj M, editors. 2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010). IEEE; 2010. p. 1–4. doi: 10.1109/CNNA.2010.
  • Mattoccia S, Macrı P. 3D glasses as mobility aid for visually impaired people. In: Agapito L, Bronstein MM, Rother C, editors. Computer Vision–ECCV 2014 Workshops ECCV 2014 [Internet] (Lecture Notes in Computer Science; Vol. 8927). Agapito: Springer International Publishing; 2014. Available from: 10.1007/978-3-319-16199-0
  • Hu J. Research and implementation of navigation glasses for the blind based on ultrasonic and image recognition. Hangzhou: Hangzhou Dianzi University; 2016.
  • He T, Zhang R, Liu C, et al. Machine vision-based design of intelligent guide glasses for the blind. Appl Electron Tech. 2017;43(4):58–61.
  • Liu X-Y, Yang H-X, Liu X-H, et al. The research of the blind navigation glasses. Coll Phys. 2017;36(6):522–555.
  • Zhuhua C, Xiangyu C, Wang J, et al. The design of intelligent blind navigation glasses. J Fujian Comput. 2021;37(2):91–93.
  • Kim JH, Kim SK, Lee TM, et al. Smart glasses using deep learning and stereo camera. 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE); Vol. 2; 2019. p. 294–295.
  • Son H, Krishnagiri D, Jeganathan VS, et al. Crosswalk guidance system for the blind. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2020; 2020 Jul. p. 3327–3330.
  • Saha S, Shakal FH, Saleque Am Trisha JJ, et al. Vision maker: an audio visual and navigation aid for visually impaired person. Proceedings of International Conference on Intelligent Engineering and Management, ICIEM 2020; 2020. p. 266–271.
  • Rajendran PS, Krishnan P, Aravindhar DJ. Design and implementation of voice assisted smart glasses for visually impaired people using google vision API. 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA) 2020. Institute of Electrical and Electronics Engineers Inc.; 2020. p. 1221–1224.
  • Meliones A, Filios C. Blind helper: a pedestrian navigation system for blinds and visually impaired. ACM International Conference Proceeding Series; Vol. 20; 2016 Jun 29. p. 1–4.
  • Maiti M, Mallick P, Bagchi M, et al. Intelligent electronic eye for visually impaired people. 2017:39–42.
  • Nishajith A, Nivedha J, Nair SS, et al. Smart cap–wearable visual guidance system for blind. 2018 International Conference on Inventive Research in Computing Applications (ICIRCA); 2018. p. 275–278.
  • Muneshwara MS, Lokesh A, Swetha MS, et al. Ultrasonic and image mapped path finder for the blind people in the real time system. IEEE International Conference on Power, Control, Signals and Instrumentation Engineering, ICPCSI 2017; 2018. p. 964–969.
  • Kaul OB, Rohs M, Mogalle M, et al. Around-the-head tactile system for supporting micro navigation of people with visual impairments. ACM Trans Comput Hum Interact. 2021;28(4):1–35. doi: 10.1145/3458021.
  • Aarthi V, Sre CS, Delfina MS, et al. Smart alert and intimation system for VIP (visually impaired person). Proceedings–5th International Conference on Computing Methodologies and Communication, ICCMC 2021; 2021. p. 1284–1289.
  • Raja L, Santhosh R. Experimental study on shoe based navigation system for the visually impaired. Mater Today Proc. 2021;45:1713–1716. doi: 10.1016/j.matpr.2020.08.615.
  • Velázquez R, Pissaloux E, Rodrigo P, et al. An outdoor navigation system for blind pedestrians using GPS and tactile-foot feedback. Appl Sci. 2018;8(4):578. doi: 10.3390/app8040578.
  • Aqeel K, Naveed U, Fatima F, et al. Skin stroking haptic feedback glove for assisting blinds in navigation. 2017 IEEE International Conference on Robotics and Biomimetics, ROBIO 2017; 2018 Jan. p. 177–182.
  • Khairnar DP, Karad RB, Kapse A, et al. PARTHA: a visually impaired assistance system. 2020 3rd International Conference on Communication Systems, Computing and IT Applications (CSCITA); 2020. p. 32–37.
  • Sedighi P, Norouzi MH, Delrobaei M. An RFID-Based assistive glove to help the visually impaired. IEEE Trans Instrum Meas. 2021;70:1–9. doi: 10.1109/TIM.2021.3069834.
  • Brock A, Kammoun S, Macé M, et al. Using wrist vibrations to guide hand movement and whole body navigation. I-Com. 2014;13(3):19–28. doi: 10.1515/icom.2014.0026.
  • Petsiuk AL, Pearce JM. Low-cost open source ultrasound-sensing based navigational support for the visually impaired. Sensors. 2019;19(17):3783. doi: 10.3390/s19173783.
  • Satpute SA, Canady JR, Klatzky RL, et al. FingerSight: a vibrotactile wearable ring for assistance with locating and reaching objects in peripersonal space. IEEE Trans Haptics. 2020;13(2):325–333. doi: 10.1109/TOH.2019.2945561.
  • Xiao J, Ramdath K, Losilevish M, et al. A low cost outdoor assistive navigation system for blind people. Proceedings of the 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA); 2013. p. 828–833.
  • Aymaz S, Çavdar T. Ultrasonic assistive headset for visually impaired people. 2016 39th International Conference on Telecommunications and Signal Processing, TSP 2016; 2016. p. 388–391.
  • Shoval S, Borenstein J, Koren Y. Mobile robot obstacle avoidance in a computerized travel aid for the blind. Proc IEEE Int Conf Robot Autom; 1994. p. 2023–2028.
  • Kim CG, Song BS. Design of a wearable walking-guide system for the blind. iCREATe 2007–Proceedings of the 1st International Convention on Rehabilitation Engineering and Assistive Technology in Conjunction with 1st Tan Tock Seng Hospital Neurorehabilitation Meeting; 2007. p. 118–122. doi: 10.1145/1328491.1328523.
  • Kaiser EB, Lawo MBTIIC on C& IS. Wearable navigation system for the visually impaired and blind people. 2012.
  • Aizawa T, Iizima H, Abe K, et al. Study on portable haptic guide device with omnidirectional driving gear. Adv Rob. 2021;35(5):320–336. doi: 10.1080/01691864.2021.1888796.
  • Tachiquin R, Velázquez R, Del‐valle‐soto C, et al. Wearable urban mobility assistive device for visually impaired pedestrians using a smartphone and a tactile‐foot interface. Sensors. 2021;21(16):5274. doi: 10.3390/s21165274.
  • Alghamdi S, van Schyndel R, Khalil I. Accurate positioning using long range active RFID technology to assist visually impaired people. J Netw Comput Appl. 2014;41(1):135–147. doi: 10.1016/j.jnca.2013.10.015.
  • Lin Q, Han Y. A context-aware-based audio guidance system for blind people using a multimodal profile model. Sensors. 2014;14(10):18670–18700. doi: 10.3390/s141018670.
  • Kanwal N, Bostanci E, Currie K, et al. A navigation system for the visually impaired: a fusion of vision and depth sensor. Appl Bionics Biomech. 2015;2015:1–16. doi: 10.1155/2015/479857.
  • Katz BFG, Kammoun S, Parseihian G, et al. NAVIG: augmented reality guidance system for the visually impaired: combining object localization, GNSS, and spatial audio. Virtual Real. 2012;16(4):253–269. doi: 10.1007/s10055-012-0213-6.
  • Chitra P, Balamurugan V, Sumathi M, et al. Voice navigation based guiding device for visually impaired people. Proceedings–International Conference on Artificial Intelligence and Smart Systems, ICAIS 2021. Institute of Electrical and Electronics Engineers Inc.; 2021. p. 911–915.
  • Zhang X, Zhang H, Zhang L, et al. Double-diamond model-based orientation guidance in wearable human-machine navigation systems for blind and visually impaired people. Sensors. 2019;19(21):4670. doi: 10.3390/s19214670.
  • Huan Z, Chen X, Liang J. Design and implementation of blind-navigation system based on RFID and smartphones’ inertial navigation. CAAI Trans Intell Syst. 2019;14(3):491–499.
  • Bai J, Liu Z, Lin Y, et al. Wearable travel aid for environment perception and navigation of visually impaired people. Electronics. 2019;8(6):697. doi: 10.3390/electronics8060697.
  • Meng-Li S, Yi-Chun C, Chia-Yu T, et al. DLWV2: a deep learning-based wearable vision-system with vibrotactile-feedback for visually impaired people to reach objects. 2018 IEEE RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2018. p. 1–9.
  • Abobeah R, Hussein M, Abdelwahab M, et al. Wearable RGB camera-based navigation system for the visually impaired. VISIGRAPP 2018–Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. SciTePress; 2018. p. 555–562.
  • Mocanu B, Tapu R, Zaharia T. When ultrasonic sensors and computer vision join forces for efficient obstacle detection and recognition. Sensors. 2016;16(11):1807. doi: 10.3390/s16111807.
  • Huang H, Lin TC, Cai D. Non-visual traffic signal information: an investigation of the recognition performance of blind users using the wearable tactile traffic lights assist device. Int J Ind Ergon. 2017;57:1–9. doi: 10.1016/j.ergon.2016.11.002.
  • Vera Yánez D, Marcillo D, Pereira A. Portable navigation device for blind people. 2017 12th Iberian Conference on Information Systems and Technologies (CISTI); 2017. p. 1–6.
  • Yánez DV, Marcillo D, Fernandes H, et al. Blind guide: anytime, anywhere. ACM International Conference Proceeding Series. Association for Computing Machinery; 2016. p. 346–352.
  • Scheggi S, Talarico A, Prattichizzo D. A remote guidance system for blind and visually impaired people via vibrotactile haptic feedback. 22nd Mediterranean Conference of on Control and Automation (MED); 2014. p. 20–23.
  • José J, Farrajota M, Rodrigues JM, et al. The smart vision local navigation aid for blind and visually impaired persons. Int J Digit Content Technol Appl. 2011;5(5):362–375. doi: 10.4156/jdcta.vol5.issue5.40.
  • Nie M, Ren J, Li Z, et al. IEW: an auditory guidance system based on environment understanding for the visually impaired people. 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE; 2009. p. 7240–7243.
  • Balakrishnan G, Sainarayanan G, Nagarajan R, et al. On stereo processing procedure applied towards blind navigation aid–SVETA. Eighth International Symposium on Signal Processing & Its Applications; 2005. p. 567–570.
  • Ran L, Helal S, Drishti MS. An integrated indoor/outdoor blind navigation system and service. Proceedings–Second IEEE Annual Conference on Pervasive Computing and Communications, PerCom; 2004. p. 23–30.
  • Farcy R, Damaschini RM. Guidance–assist system for the blind. Biomonit Endosc Technol. 2001;4158:209–214.
  • GB-16930.1-2014. National standards full text public system-tactile sticks-part 1: a sign of safety color. 2014.
  • Poggi M, Mattoccia S. A wearable mobility aid for the visually impaired based on embedded 3D vision and deep learning. Proc IEEE Symp Comput Commun 2016; 2016 Aug. p. 208–213.
  • Junior M, Silva D, Bertolino FJ, et al. Location guide DV. 2014 IEEE Brasil RFID [Internet]; 2014. Available from: http://www.iso.org
  • Chai Y, Lingling M. Design and realization of a new blind lane and detector. 2018;41.
  • Mehta U, Alim M, Kumar S. Smart path guidance mobile aid for visually disabled persons. Procedia Comput Sci. 2017;105:52–56. doi: 10.1016/j.procs.2017.01.190.
  • Munir MU, Mahmood H, Zeb F, et al. The voice enabled stick. 2017 20th International Conference of Computer and Information Technology (ICCIT); 2017. p. 1–5.
  • Sen A, Sen K, Das J. Ultrasonic blind stick for completely blind people to avoid any kind of obstacles. 2018 IEEE SENSORS; New Delhi, India. IEEE; 2018. p. 1–4.
  • Meshram VV, Patil K, Meshram VA, et al. An astute assistive device for mobility and object recognition for visually impaired people. IEEE Trans Hum Mach Syst. 2019;49(5):449–460. doi: 10.1109/THMS.2019.2931745.
  • Ambawane P, Bharatia D, Rane P. Smart e-stick for visually impaired using video intelligence API. 2019 IEEE Bombay Section Signature Conference (IBSSC); 2019. p. 1–6.
  • Faria J, Lopes S, Fernandes H, et al. Electronic white cane for blind people navigation assistance. 2010 World Automation Congress; Kobe, Japan. IEEE; 2010. p. 1–7.
  • Han N. Design and implement of blind navigation system based on RFID. Jilin: School of Computer Science and Technology, Jilin University; 2012.
  • Kassim AM, Jaafar Hi Azam Ma Abas N, Yasuno T, et al. Design and development of navigation system by using RFID technology. Proceedings–2013 IEEE 3rd International Conference on System Engineering and Technology, ICSET 2013; 2013. p. 258–262.
  • Fernandes H, Filipe V, Costa P, et al. Location based services for the blind supported by RFID technology. Procedia Comput Sci. 2014;27:2–8. doi: 10.1016/j.procs.2014.02.002.
  • Bai R, Gong J, Hu M, et al. The design of outdoor guide system based on RFID technology. Video Eng. 2019;43(5):76–79.
  • Du Buf JMH, Castells D, Rodrigues JMF, et al. Obstacle detection and avoidance on sidewalks [Internet]; 2010. Available from: https://www.researchgate.net/publication/216435190
  • Hans Du Buf JM, Barroso J, Rodrigues JMF, et al. The SmartVision navigation prototype for blind users. Int J Digit Content Technol Appl. 2011;5(5):351–361. doi: 10.4156/jdcta.vol5.issue5.39.
  • Noorithaya A, Kumar MK, Sreedevi A. Voice assisted navigation system for the blind. Proceedings of International Conference on Circuits, Communication, Control and Computing, I4C 2014; 2014 Nov. p. 177–181.
  • Dhod R, Singh G, Singh G, et al. Low cost GPS and GSM based navigational aid for visually impaired people. Wireless Pers Commun. 2017;92(4):1575–1589. doi: 10.1007/s11277-016-3622-0.
  • Srinivasan S, Rajesh M. Smart walking stick. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI); Tirunelveli, India. IEEE; 2019. p. 576–579.
  • Kumar KNS, Sathish R, Vinayak S, et al. Braille assistance system for visually impaired, blind & deaf-mute people in indoor & outdoor application. 2019 4th International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT); Bangalore, India. IEEE; 2019. p. 1505–1509. doi: 10.1109/RTEICT46194.2019.9016765.
  • Narayani L, Sivapalanirajan T, Keerthika M, et al. Design of smart cane with integrated camera module for visually impaired people. Proceedings–International Conference on Artificial Intelligence and Smart Systems, ICAIS 2021. Institute of Electrical and Electronics Engineers Inc.; 2021. p. 999–1004.
  • Lin JP. Design and implementation of guidance system for blind people. Comput Knowl Technol. 2021;17(4):24–28. Available from: www.dnzs.net.cn
  • Fernandes H, Faria J, Paredes H, et al. An integrated system for blind day-to-day life autonomy. In: Miesenberger K, Klaus J, Zagler WL, Karshmer AI, editors. The 13th International ACM SIGACCESS Conference on Computers and Accessibility [Internet] (Lecture Notes in Computer Science; Vol. 4061). Berlin; Heidelberg: Springer Berlin Heidelberg; 2011. doi: 10.1145/2049536.2049579.
  • Jeon DH, Jeon JU, Beak HH, et al. Situation-awareness white cane using a mobile device. J Korea Soc Comput Inform. 2014;19(11):167–173. doi: 10.9708/jksci.2014.19.11.167.
  • Intelligent mobility cane for people who are blind and deaf-blind: a multidisciplinary design project that assists people with disabilities. Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition; 2015. p. 13–19.
  • Hejun W, Peksi S, W, Seng G. An affordable and attachable electronic device for the blind. 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA); Hong Kong, China. IEEE; 2015. p. 559–562.
  • Anandkumar KM, Krishnan A, Deepakraj G, et al. Remote controlled human navigational assistance for the blind using intelligent computing. ACM International Conference Proceeding Series. Association for Computing Machinery; 2017.
  • Lifang H, Zhiling Z, Jiehua W, et al. Design and implementation of multi-functional intelligent blind crutch. Electronic Test [Internet]; 2019 Jul. p. 28–29.
  • Paper R, Lin Q, Hahn H, et al. Top-view-based guidance for blind people using directional ellipse model. 2013:1–13.
  • Fan MY, Bao JT, Tang HR. A guide cane system for assisting the blind in travelling in outdoor environments AMM. 2014;631–632:568–571. doi: 10.4028/www.scientific.net/AMM.631-632.568.
  • Gupta S, Sharma I, Tiwari A, et al. Advanced guide cane for the visually impaired people. 2015 1st International Conference on Next Generation Computing Technologies (NGCT); Dehradun, India. IEEE; 2015. p. 452–455.
  • Jeong GY, Yu KH. Multi-section sensing and vibrotactile perception for walking guide of visually impaired person. Sensors. 2016;16(7):1070. doi: 10.3390/s16071070.
  • Nandini AV, Dwivedi A, Kumar NA, et al. Smart cane for assisting visually impaired people. Proceedings of the TENCON 2019: Technology, Knowledge, and Society :TENCON 2019–2019 IEEE RegionConference (TENCON); 2019. p. 546–551.
  • Zhu W, Liu H, Wang B, et al. An intelligent blind guidance system based on visual-touch cross-modal perception. CAAI Trans Intell Syst. 2020;15(1):39–46.
  • Yuan Z. A raspberry Pi-based navigation cane for the blind with obstacle avoidance. J Ezhou Univ. 2020;27(4):98–100.
  • Landa-Hernández A, Casarubias-Vargas H, Bayro-Corrochano E. Geometric fuzzy techniques for guidance of visually impaired people. Appl Bionics Biomech. 2013;10(4):139–157. doi: 10.1155/2013/539521.
  • SathyaNarayanan E, Gokul Deepan D, Nithin BP, et al. IoT based smart walking cane for typhlotic with voice assistance. 2016 Online International Conference on Green Engineering and Technologies (IC-GET); Coimbatore, India. IEEE; 2016. p. 1–6.
  • Kunta V, Tuniki C, Sairam U. Multi-functional blind stick for visually impaired people. 2020 5th International Conference on Communication and Electronics Systems (ICCES); Coimbatore, India: IEEE; 2020. p. 895–899.
  • Barathi Kanna S, Kumar G, Niranjan TR, et al. Low cost smart navigation system for the blind. 2021 7th International Conference on Advanced Computing and Communication Systems, ICACCS 2021. Institute of Electrical and Electronics Engineers Inc.; 2021. p. 466–471.
  • Krishnan A, Deepakraj G, Nishanth N, et al. Autonomous walking stick for the blind using echolocation and image processing. 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I); 2016. p. 13–16.
  • Zhao Y, Bennett CL, Benko H, et al. Enabling people with visual impairments to navigate virtual reality with a haptic and auditory cane simulation. Conference on Human Factors in Computing Systems–Proceedings. Association for Computing Machinery; 2018.
  • Kee GM, Zain Zm, Salimin Rh. Design and development PIC-based autonomous robot. 2008 IEEE International Conference on Robotics, Automation and Mechatronics, RAM 2008; 2008. p. 1–5.
  • Lee MFR, Chiu FHS, Zhuo C. Novel design of a social mobile robot for the blind disabilities. 2013 IEEE/SICE International Symposium on System Integration, SII 2013; 2013. p. 161–166.
  • Razali MF, Toha SF, Abidin ZZ. Intelligent path guidance robot for visually impaired assistance. Procedia Comput Sci. 2015;76:330–335. doi: 10.1016/j.procs.2015.12.303.
  • Wu TF, Tsai PS, Hu NT, et al. Intelligent wheeled mobile robots for blind navigation application. Eng Comput. 2017;34(2):214–238. doi: 10.1108/EC-08-2015-0256.
  • Bao J, Yao X, Tang H, et al. Outdoor navigation of a mobile robot by following GPS waypoints and local pedestrian lane. 8th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems, CYBER 2018; 2019. p. 198–203.
  • Megalingam RK, Vishnu S, Sasikumar V, et al. Autonomous path guiding robot for visually impaired people. Vol. 768, Advances in intelligent systems and computing. Singapore: Springer Singapore; 2019. p. 257–266.
  • Ming S, Wang L, Hong Z, et al. Research on guideline navigation system based on deep learning. 2021 4th International Conference on Intelligent Robotics and Control Engineering (IRCE); 2021. p. 96–. .
  • Kammath AG, Nair KS, Sudar S, et al. Design of an intelligent electric vehicle for blind. 7th International Conference on Intelligent Systems and Control, ISCO 2013; 2013. p. 244–249.
  • Hosseini MSK, Mokhtari M, Atyabi M. The intelligent electronic system especially for quadriplegics wheelchair and blinds bicycle (new method in paralympics). 2005 ICSC Congress on Computational Intelligence Methods and Applications; Istanbul, Turkey. IEEE; 2005.
  • Jiménez MF, Mello RC, Bastos T, et al. Assistive locomotion device with haptic feedback for guiding visually impaired people. Med Eng Phys. 2020;80:18–25. doi: 10.1016/j.medengphy.2020.04.002.
  • Liang Y, Zhu W, Wang H, et al. Design of blind navigator based on ultrasonic tester. J Shanghai Univ Electric Power. 2010;26(6):601–604.
  • Huang C, Wang D, Gao Y, et al. About the design and research of intelligent walking aid. China Sci Technol Inform. 2013;10:150–153.
  • Chen Z, Ni Z, Wang Y, et al. Design and realization of the intelligent blind navigation. New Technol New Process. 2015;3:36–38.
  • Ni Z. Design and implementation of an intelligent navigation device for the blind. Shanxi: Xi’an University of Technology; 2016.
  • Zhai J, Wang M. Research of the guide based on the process of the ultrasonic characteristic signal. J Ordnance Equip Eng. 2018;39(9):178–182.
  • Zhao J, Guo B, Li D. Research and design on intelligent obstacle avoidance apparatus based on microcontroller 12C5A60. Microprocessors. 2015;36(1):79–83.
  • Rosas-Flores B, Hernández-Zavala A, Huerta-Ruelas J. Lightweight obstacle detector based on scattered IR and Lock-In filtering. Infrared Phys Technol. 2020;105:103157. doi: 10.1016/j.infrared.2019.103157.
  • Iqbal A, Farooq U, Mahmood H, et al. A low cost artificial vision system for visually impaired people. 2009 International Conference on Computer and Electrical Engineering, ICCEE 2009; 2009. p. 474–479.
  • Khade S, Dandawate YH. Hardware implementation of obstacle detection for assisting visually impaired people in an unfamiliar environment by using raspberry Pi. In: Communications in Computer and Information Science. Singapore: Springer; 2016. p. 889–895.
  • Ranaweera PS, Madhuranga SHR, Fonseka HFAS, et al. Electronic travel aid system for visually impaired people. 2017 5th International Conference on Information and Communication Technology (ICoIC7); 2017.
  • Tang W. Tactile guidance system for the blind based on digital image processing. J Phys Conf Ser. 2020;1486(4):042037. doi: 10.1088/1742-6596/1486/4/042037.
  • Ma’muriyah N, Yulianto A, Lili. Design prototype of audio guidance system for blind by using raspberry pi and fuzzy logic controller. J Phys Conf Ser. 2019;1230(1):1–10.
  • Rahman A, Sadi MS. IoT enabled automated object recognition for the visually impaired. Comput Methods Prog Biomed Update. 2021;1:100015. doi: 10.1016/j.cmpbup.2021.100015.
  • Sammouda R, Alrjoub A. Mobile blind navigation system using RFID. GSCIT 2015–Global Summit on Computer and Information Technology–Proceedings; 2015. p. 1–4.
  • Kayama K, Yairj IE, Igi S. Semi-autonomous outdoor mobility support system for elderly and disabled people. IEEE International Conference on Intelligent Robots and Systems; 2003. p. 2606–2611.
  • Al-Fahoum AS, Al-Hmoud HB, Al-Fraihat AA. A smart infrared microcontroller-based blind guidance system. Act Passive Electron Compon. 2013;2013:1–7. doi: 10.1155/2013/726480.
  • Sövény B, Kovács G, Kardkovács ZT. Blind guide: a virtual eye for guiding indoor and outdoor movement. J Multimodal User Interfaces. 2015;9(4):287–297. doi: 10.1007/s12193-015-0191-6.
  • You J. A vibrotactile feedback based cooperative navigation system for the blind. Southeast University; 2018:1–83.
  • Joshi A, Agrawal H, Agrawal P. Simultaneous localization and mapping for visually impaired people for outdoor environment. Proceedings of the Second International Conference on Computer and Communication Technologies Advances in Intelligent Systems and Computing. New Delhi: Springer India; 2016. p. 107–115.
  • Bitonto D, Corriero P, Pesare N, et al. Integrating computer vision object recognition with location based services for the blind. International Conference on Universal Access in Human–Computer Interaction. Springer; 2014. p. 228–237.
  • Roska T, Bálya D, Lázár A, et al. System aspects of a bionic eyeglass. Proceedings–IEEE International Symposium on Circuits and Systems; 2006. p. 161–164.
  • Costa P, Fernandes H, Vasconcelos V, et al. Fiducials marks detection to assist visually impaired people navigation. Int J Digit Content Technol Appl. 2011;5(5):342–350. doi: 10.4156/jdcta.vol5.issue5.38.
  • Jośe J, Du Buf JMH, Rodrigues JMF. Visual navigation for the blind: path and obstacle detection. International Conference on Pattern Recognition Applications and Methods; 2012. p. 515–519.
  • Tsai DM, Hsu H, Chiu WY. 3-D vision-assist guidance for robots or the visually impaired. Ind Robot. 2014;41(4):351–364. doi: 10.1108/IR-12-2013-427.
  • Malūkas U, Maskeliūnas R, Damaševičius R, et al. Real time path finding for assisted living using deep learning. J Univ Comput Sci. 2018;24(4):475–487.
  • Chen Z. Research on stereo matching algorithm for blind travel. Jiangxi University of Technology; 2018:1–63.
  • Meliones A, Llorente JL. Study and development of a sonar obstacle recognition algorithm for outdoor blind navigation. ACM International Conference Proceeding Series. Association for Computing Machinery; 2019. p. 129–137.
  • Real S, Araujo A. VES: a mixed-reality system to assist multisensory spatial perception and cognition for blind and visually impaired people. Appl Sci. 2020;10(2):523. doi: 10.3390/app10020523.
  • Costa P, Fernandes H, Martins P, et al. Obstacle detection using stereo imaging to assist the navigation of visually impaired people. Procedia Comput Sci. 2012;14:83–93. doi: 10.1016/j.procs.2012.10.010.
  • Costa P, Fernandes H, Barroso J, et al. Obstacle detection and avoidance module for the blind. World Automation Congress Proceedings. IEEE; 2016. p. 1–6.
  • Ivanov R. Real-time GPS track simplification algorithm for outdoor navigation of visually impaired. J Netw Comput Appl. 2012;35(5):1559–1567. doi: 10.1016/j.jnca.2012.02.002.
  • Wang Z, Fang M, Lin X, et al. Route planning in handheld blind navigation system based on RFID. Comput Eng Des. 2012;33(5):2063–2067.
  • Yusof TST, Toha SF, Yusof HM. Path planning for visually impaired people in an unfamiliar environment using particle swarm optimization. Procedia Comput Sci. 2015;76:80–86. doi: 10.1016/j.procs.2015.12.281.
  • Zhao M, Lu H, Yang S, et al. A fast robot path planning algorithm based on bidirectional associative learning. Comput Ind Eng. 2021;155:1–16.
  • Xiaoli W. Research on key technology of local blind image navigation based on scene matching. Changchun University of Science and Technology; 2011:1–53.
  • Wang X, Wang L. The teaching assistance system of java programming based or SSH structure. J Changchun Univ Nat Sci Ed. 2010;20(5):10–12.
  • Haraszy Z, Cristea DG, Micut S, et al. Efficient algorithm for extracting essential head related impulse response data for acoustic virtual reality development. WSEAS International conference on systems;WSEAS CSCC multiconference. World Scientific and Engineering Academy and Society (WSEAS). 2011;315–320.
  • Li J. Research on binocular stereo matching algorithms for blind guider system. Wuhan University; 2013:1–117.
  • Lu Y, Jiang J. Navigation algorithm and implementation for blind based on GPS trajectory. J Comput Appl. 2013;33(4):1161–1164. doi: 10.3724/SP.J.1087.2013.01161.
  • Rajakaruna N, Rathnayake C, Abhayasinghe N, et al. Inertial data based deblurring for vision impaired navigation. International Conference on Indoor Positioning & Indoor Navigation. IEEE; 2014. p. 416–420.
  • Rajakaruna N, Rathnayake C, Chan KY, et al. I. Image deblurring for navigation systems of vision impaired people using sensor fusion data. IEEE Ninth International Conference on Intelligent Sensors. IEEE; 2014. p. 21–24.
  • Wenyuan J, Tong W. Integrated navigation method of the blind walking based on computer vision/GPS/MG attitude measurement. Navig Control. 2017;16(5):13–20.
  • Hu Q. Research on blind navigation algorithm based on machine vision. Jiangsu: Nanjing University of Aeronautics and Astronautics; 2020.
  • Zeng Q, Wang J, Meng Q, et al. Seamless pedestrian navigation methodology optimized for indoor/outdoor detection. IEEE Sensors J. 2018;18(1):363–374. doi: 10.1109/JSEN.2017.2764509.
  • Elbes M, Al-Fuqaha A. Design of a social collaboration and precise localization services for the blind and visually impaired. Procedia Comput Sci. 2013;21:282–291. doi: 10.1016/j.procs.2013.09.037.
  • Hu E, Deng Z, Xu Q, et al. Relative entropy-based Kalman filter for seamless indoor/outdoor multi-source fusion positioning with INS/TC-OFDM/GNSS. Cluster Comput. 2019;22(S4):8351–8361. doi: 10.1007/s10586-018-1803-1.
  • Romic K, Galic I, Leventic H, et al. Pedestrian crosswalk detection using a column and row structure analysis in assistance systems for the visually impaired. Acta Polytech Hung. 2021;18(7):25–45. doi: 10.12700/APH.18.7.2021.7.2.
  • Le MC, Phung SL, Bouzerdoum A. Pedestrian lane detection for assistive navigation of blind people. Proceedings–International Conference on Pattern Recognition (ICPR); 2012. p. 2594–2597.
  • Ortigosa N, Morillas S. Fuzzy free path detection from disparity maps by using least-squares fitting to a plane. J Intell Robot Syst. 2014;75(2):313–330. doi: 10.1007/s10846-013-9997-1.
  • Ortigosa N, Morillas S, Peris-Fajarnés G. Obstacle-free pathway detection by means of depth maps. J Intell Robot Syst. 2011;63(1):115–129. doi: 10.1007/s10846-010-9498-4.
  • Adjouadi M. A man-machine vision interface for sensing the environment. J Rehabil Res Dev. 1992;29(2):57–76. doi: 10.1682/jrrd.1992.04.0057.
  • Ståhl A, Newman E, Dahlin-Ivanoff S, et al. Detection of warning surfaces in pedestrian environments: the importance for blind people of kerbs, depth, and structure of tactile surfaces. Disabil Rehabil. 2010;32(6):469–482. doi: 10.3109/09638280903171543.
  • Tang W. Research on object detection and tracking of outdoor blind sidewalk obstacles based on deep learning. Jiangxi: Jiangxi University of Science and Technology; 2021.
  • Tang H, Zhu Z. A segmentation-based stereovision approach for assisting visually impaired people. International Conference on Computers Helping People with Special Needs. Springer-Verlag; 2012. p. 581–587.
  • Farah RN, Irwan N, Zuraida RL, et al. Modified virtual semi-circle approach for a reactive collision avoidance of a mobile robot in an outdoor environment. Appl Mech Mater. 2014;679:171–175. doi: 10.4028/www.scientific.net/AMM.679.171.
  • Faibish S, Abramovitz M. Perception and navigation of mobile robots. Proceedings of the 1992 IEEE International Symposium on Intelligent Control; 1992. p. 335–340.
  • Zhang H, Cheng F. Deep learning-based navigation path planning with collision avoidance for the blind. J Nanjing Univ Inform Sci Technol Nat Sci. 2021;14(2):220–226.
  • Tian L, Tian Y, Yi C. Detecting good quality frames in videos captured by a wearable camera for blind navigation. Proceedings–2013 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2013. IEEE; 2013. p. 334–337.
  • Kim Y, Harders M, Gassert R. Identification of vibrotactile patterns encoding obstacle distance information. IEEE Trans Haptics. 2015;8(3):298–305. doi: 10.1109/TOH.2015.2415213.
  • Leiva KMR, Jaén-Vargas M, Codina B, et al. Inertial measurement unit sensors in assistive technologies for visually impaired people: a review. Sensors. 2021;21(14):1–26.
  • Lee KM, Li M, Lin CY. Magnetic tensor sensor and way-finding method based on geomagnetic field effects with applications for visually impaired users. IEEE/ASME Trans Mechatron. 2016;21(6):2694–2704. doi: 10.1109/TMECH.2016.2582850.
  • Ritterbusch S, Jaworek G. Camassia: monocular interactive mobile way sonification. In: Miesenberger K, Kouroupetroglou G, editors. BT–computers helping people with special needs. Cham: Springer International Publishing; 2018. p. 12–18.
  • Agrawal M, Konolige K, Bolles RC. Localization and mapping for autonomous navigation in outdoor terrains: a stereo vision approach. 2007.
  • Ahmetovic D, Avanzini F, Baratè A, et al. Sonification of rotation instructions to support navigation of people with visual impairment. 2019 IEEE International Conference on Pervasive Computing and Communications (PerCom); 2019. p. 1.
  • Ying JC, Li CY, Wu GW, et al. A deep learning approach to sensory navigation device for blind guidance. Proceedings–20th International Conference on High Performance Computing and Communications, 16th International Conference on Smart City and 4th International Conference on Data Science and Systems, HPCC/SmartCity/DSS 2018; 2019. p. 1195–1200.
  • Gupta A, Khandelwal S, Gandhi T. Blind navigation using ambient crowd analysis. 2018 IEEE 8th International Advance Computing Conference (IACC). IEEE; 2018. p. 131–135.
  • Lin Q, Han Y, Hahn H. Vision-based navigation using top-view transform and beam-ray model. 2011 International Conference on Advanced Computer Science and Information Systems(ICACSIS) [Internet]; 2011. p. 371–376. Available from: https://www.researchgate.net/publication/254048246
  • Iakovidis DK, Diamantis D, Dimas G, et al. Digital enhancement of cultural experience and accessibility for the visually impaired. In: Paiva S, editor. Technological trends in improved mobility of the visually impaired. EAI/springer innovations in communication and computing. Springer Science and Business Media Deutschland GmbH. Cham: Springer; 2020. p. 237–271.
  • Chen J, Takagi N. A pattern recognition method for automating tactile graphics translation from hand-drawn maps. 2013 IEEE International Conference on Systems, Man, and Cybernetics. IEEE; 2013. p. 4173–4178.
  • Zhongliang F, Baofeng W, Yulong H. Research of blind e-map based on geo-space cognition. J Nanchang Univ Eng Technol. 2015;37(3):295–299.
  • Buzzi MC, Buzzi M, Leporini B, et al. Making visual maps accessible to the blind. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 6766; 2011. p. 271–280.
  • Smelser NJ, Baltes PB. Tactile maps in geography. In: International encyclopedia of the social & behavioral sciences; 2001. p. 15435–15437.
  • Satoi T, Koeda M, Yoshikawa T. Virtual haptic map using force display device for visually impaired. IFAC Proc Vol. 2009;42(16):645–650. doi: 10.3182/20090909-4-JP-2010.00109.
  • D, Oliveira ST, Suemitsu K, Okimoto MLLR. Design of a tactile map: an assistive product for the visually impaired. Adv Intell Syst Comput. 2016;485:711–719.
  • Abd Hamid NN, Wan Adnan WA, Razak FHA. Identifying sound cues of the outdoor environment by blind people to represent landmarks on audio-tactile maps. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10279; 2017. p. 279–290.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.