188
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Optical fiber sensors for posture monitoring, ulcer detection and control in a wheelchair: a state-of-the-art

ORCID Icon, , &
Pages 1773-1790 | Received 15 Nov 2022, Accepted 01 Jul 2023, Published online: 13 Jul 2023

References

  • World Health Organization. WHO global disability action plan 2014–2021; 2022 [cited 2022 May 26]. Available from: https://apps.who.int/iris/rest/bitstreams/887498/retrieve.
  • World Health Organization. who guidelines on physical activity and sedentary behavior; 2022 [cited 2022 Jan 3]. Available from: https://apps.who.int/iris/bitstream/handle/10665/336656/9789240015128-eng.pdf.
  • World Health Organization. World report on disability; 2022 [cited 2022 Jan 3]. Available from: https://www.who.int/disabilities/world/_report/2011/report.pdf.
  • Tlili F, Haddad R, Ouakrim Y, et al. A Survey on sitting posture monitoring systems 2018 9th International Symposium on Signal, Image, Video and Communications (ISIVC); Rabat, Morocco, 2018. p. 185–190. doi: 10.1109/ISIVC.2018.8709239
  • Margolis D, Knauss J, Bilker W, et al. Medical conditions as risk factors for pressure ulcers in an outpatient setting. Age Ageing. 2003;32(3):259–264. doi: 10.1093/ageing/32.3.259.
  • Poeggel S, Tosi D, Duraibabu D, et al. Optical fibre pressure sensors in medical applications. Sensors. 2015;15(7):17115–17148. https://www.mdpi.com/1424-8220/15/7/17115. doi: 10.3390/s150717115.
  • Roriz P, Frazao O, Lobo-Ribeiro AB, et al. Review of fiber-optic pressure sensors for biomedical and biomechanical applications. J Biomed Opt. 2013;18(5):050903. doi: 10.1117/1.JBO.18.5.050903.
  • Marques C, Webb D, Andre P. Polymer optical fiber sensors in human life safety. Opt Fiber Technol. 2017;36:144–154. doi: 10.1016/j.yofte.2017.03.010.
  • Correia R, James S, Lee SW, et al. Biomedical application of optical fibre sensors. J. Opt. 2018;20(7):073003. doi: 10.1088/2040-8986/aac68d.
  • Avellar LM, Leal-Junior AG, Diaz CAR, et al. Pof smart carpet: a multiplexed polymer optical fiber-embedded smart carpet for gait analysis. Sensors. 2019;19(15):3356. Available from: https://www.mdpi.com/1424-8220/19/15/3356. doi: 10.3390/s19153356.
  • Leal-Junior AG, Díaz CR, Marques C, et al. 3D-printed POF insole: development and applications of a low-cost, highly customizable device for plantar pressure and ground reaction forces monitoring. Optic Laser Technol. 2019;116:256–264. Available from: https://www.sciencedirect.com/science/article/pii/S0030399219300994. doi: 10.1016/j.optlastec.2019.03.035.
  • Leal-Junior AG, Díaz CR, Jiménez MF, et al. Polymer optical fiber-based sensor system for smart walker instrumentation and health assessment. IEEE Sensors J. 2019;19(2):567–574. doi: 10.1109/JSEN.2018.2878735.
  • Leal Junior A, Díaz C, Pontes M, et al. Polymer optical fiber-embedded, 3d-printed instrumented support for microclimate and human-robot interaction forces assessment. Optic Laser Technol. 2019;112:323–331. doi: 10.1016/j.optlastec.2018.11.044.
  • Ballaji H, Correia R, Liu C, et al. Optical fibre sensor for capillary refill time and contact pressure measurements under the foot. Sensors. 2021;21(18):6072. doi: 10.3390/s21186072.
  • Leal-Junior A, Campos V, Frizera A, et al. Low-cost and high-resolution pressure sensors using highly stretchable polymer optical fibers. Mater Lett. 2020;271:127810. Available from: https://www.sciencedirect.com/science/article/pii/S0167577X20305152. doi: 10.1016/j.matlet.2020.127810.
  • Bhowmik K, Ambikairajah E, Peng GD, et al. High-sensitivity polymer fibre Bragg grating sensor for biomedical applications. 2016 IEEE Sensors Applications Symposium (SAS); Catania, Italy, 2016. p. 1–5. doi: 10.1109/SAS.2016.7479822.
  • Domingues MF, Alberto N, Leitao CSJ, et al. Insole optical fiber sensor architecture for remote gait analysis—an e-health solution. IEEE Internet Things J. 2019;6(1):207–214. doi: 10.1109/JIOT.2017.2723263.
  • Tosi D, Macchi EG, Gallati M, et al. Fiber-optic EFPI/FBG dual sensor for monitoring of radiofrequency thermal ablation of liver tumors. 2014 Conference on Lasers and Electro-Optics (CLEO) – Laser Science to Photonic Applications; San Jose, CA, USA, 2014. p. 1–2.
  • Liu Y, Wang Y, Yang D, et al. Hollow-core fiber-based all-fiber FPI sensor for simultaneous measurement of air pressure and temperature. IEEE Sensors J. 2019;19(23):11236–11241. doi: 10.1109/JSEN.2019.2934738.
  • Zhang H, Jiang Q. Highly sensitive air pressure sensor based on Fabry-Perot interference. IEEE Sensors J. 2022;122(7):6637–6643. doi: 10.1109/JSEN.2022.3152045.
  • Zhang S, Lei Q, Hu J, et al. An optical fiber pressure sensor with ultra-thin epoxy film and high sensitivity characteristics based on blowing bubble method. IEEE Photonics J. 2021;13(1):1–10. doi: 10.1109/JPHOT.2021.3055872.
  • Liu Z, Shin J, Bai W, et al. Integrated bioresorbable optical sensor systems for biomedical pressure and temperature monitoring. 2019 IEEE Photonics Conference (IPC); San Antonio, TX, USA, 2019. p. 1–2. doi: 10.1109/IPCon.2019.8908524.
  • Chu C, Wang J, Qiu J. Miniature high-frequency response, high-pressure-range dynamic pressure sensor based on all-silica optical fiber Fabry-Perot cavity. IEEE Sensors J. 2021;21(12):13296–13304. doi: 10.1109/JSEN.2021.3068456.
  • Reja MI, Nguyen LV, Peng L, et al. Temperature-compensated interferometric high-temperature pressure sensor using a pure silica microstructured optical fiber. IEEE Trans Instrum Meas. 2022;71:1–12. doi: 10.1109/TIM.2022.3157403.
  • Roriz P, Lobo Ribeiro AB. 10 – Fiber optical sensors in biomechanics. In Opto-mechanical fiber optic sensors. London, UK: Butterworth-Heinemann; 2018. p. 263–300. Available from: https://www.sciencedirect.com/science/article/pii/B9780128031315000106.
  • Leal-Junior AG, Díaz CR, Marques C, et al. Multiplexing technique for quasi-distributed sensors arrays in polymer optical fiber intensity variation-based sensors. Optics Laser Technol. 2019;111:81–88. Available from: https://www.sciencedirect.com/science/article/pii/S0030399218313343. doi: 10.1016/j.optlastec.2018.09.044.
  • Leal-Junior A, Avellar L, Jaimes J, et al. Polymer optical fiber-based integrated instrumentation in a robot-assisted rehabilitation smart environment: a proof of concept. Sensors. 2020;20(11):3199. Available fromhttps://www.mdpi.com/1424-8220/20/11/3199. doi: 10.3390/s20113199.
  • Leal-Junior AG, Frizera A, Theodosiou A, et al. Plane-by-plane written, low-loss polymer optical fiber Bragg grating arrays for multiparameter sensing in a smart walker. IEEE Sensors J. 2019;19(20):9221–9228. doi: 10.1109/JSEN.2019.2921419.
  • Sartiano D, Sales S. Low cost plastic optical fiber pressure sensor embedded in mattress for vital signal monitoring. Sensors. 2017;17(12):2900. Available from: https://www.mdpi.com/1424-8220/17/12/2900. doi: 10.3390/s17122900.
  • Han P, Li L, Zhang H, et al. Low-cost plastic optical fiber sensor embedded in mattress for sleep performance monitoring. Opt Fiber Technol. 2021;64:102541. doi: 10.1016/j.yofte.2021.102541.
  • Clausen I, Glott T. Development of clinically relevant implantable pressure sensors: perspectives and challenges. Sensors. 2014;14(9):17686–17702. Available from: https://www.mdpi.com/1424-8220/14/9/17686. doi: 10.3390/s140917686.
  • ISO 81060-2:2018/AMD 1. Non-invasive sphygmomanometers – part 2: clinical investigation of intermittent automated measurement type—amendment 1; 2020 [cited 2022 Jan 7). Available from: https://www.iso.org/standard/75432.html.
  • ANSI/AAMI BP22. (R2016) blood pressure transducers; 1994 [cited 2022 Jan 07]. Available from: https://www.techstreet.com/products/preview/1642170.
  • Gui Q, Lawson T, Shan S, et al. The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors. 2017;17(7):1623. Available fromhttps://www.mdpi.com/1424-8220/17/7/1623. doi: 10.3390/s17071623.
  • Hassan HU, Janting J, Aasmul S, et al. Polymer optical fiber compound parabolic concentrator fiber tip-based glucose sensor: in vitro testing. IEEE Sensors J. 2016;16(23):1–1. doi: 10.1109/JSEN.2016.2606580.
  • Leal-Junior AG, Diaz CA, Avellar LM, et al. Polymer optical fiber sensors in healthcare applications: a comprehensive review. Sensors. 2019;19(14):3156. Available from: https://www.mdpi.com/1424-8220/19/14/3156. doi: 10.3390/s19143156.
  • Pant S, Umesh S, Asokan S. Knee angle measurement device using fiber Bragg grating sensor. IEEE Sensors J. 2018;18(24):10034–10040. doi: 10.1109/JSEN.2018.2875564.
  • Domingues F, Tavares C, Leitao C, et al. Insole optical fiber Bragg grating sensors network for dynamic vertical force monitoring. J Biomed Opt. 2017;22(9):91507. doi: 10.1117/1.JBO.22.9.091507.
  • Ballaz L, Raison M, Detrembleur C. Decomposition of the vertical ground reaction forces during gait on a single force plate. J Musculoskel Neuron Interact. 2013;13:236–243.
  • Suresh R, Bhalla S, Hao J, et al. Development of a high resolution plantar pressure monitoring pad based on fiber Bragg grating (fbg) sensors. THC. 2015;23(6):785–794. doi: 10.3233/THC-151038.
  • Chen Z, Chen W, Hee HI, et al. Ballistocardiography based on optical fiber sensors. 2017 16th International Conference on Optical Communications and Networks (ICOCN); Wuzhen, China, 2017. p. 1–3. doi: 10.1109/ICOCN.2017.8121530.
  • Gandhi MSA, Chu S, Senthilnathan K, et al. Recent advances in plasmonic sensor-based fiber optic probes for biological applications. Appl Sci. 2019;9(5):949. Available from: https://www.mdpi.com/2076-3417/9/5/949. doi: 10.3390/app9050949.]
  • Sharma P, Asad S, Ali A. Bioluminescent bioreporter for assessment of arsenic contamination in water samples of India. J Biosci. 2013;38(2):251–258. doi: 10.1007/s12038-013-9305-z.
  • Cennamo N, Zeni L. Polymer optical fibers for sensing. Macromol. Symp. 2020;389(1):1900074. doi: 10.1002/masy.201900074.
  • Poeggel S, Duraibabu DB, Tosi D, et al. Differential in vivo urodynamic measurement in a single thin catheter based on two optical fiber pressure sensors. J Biomed Opt. 2015; 20(3):037005. doi: 10.1117/1.JBO.20.3.037005.
  • Poeggel S, Duraibabu D, Kalli K, et al. Recent improvement of medical optical fibre pressure and temperature sensors. Biosensors. 2015;5(3):432–449. Available from: https://www.mdpi.com/2079-6374/5/3/432. doi: 10.3390/bios5030432.
  • Leal-Junior AG, Díaz CR, Leitão C, et al. Polymer optical fiber-based sensor for simultaneous measurement of breath and heart rate under dynamic movements. Optic Laser Technol. 2019;109:429–436. Available from: https://www.sciencedirect.com/science/article/pii/S0030399218312064. doi: 10.1016/j.optlastec.2018.08.036.
  • Leal-Junior AG, Frizera A, José Pontes M. Sensitive zone parameters and curvature radius evaluation for polymer optical fiber curvature sensors. Optic Laser Technol. 2018;100:272–281. Available from: https://www.sciencedirect.com/science/article/pii/S0030399217309684. doi: 10.1016/j.optlastec.2017.10.006.
  • Liu C, Correia R, Ballaji H, et al. Optical fibre sensor for simultaneous measurement of capillary refill time and contact pressure. Sensors. 2020;20(5):1388. Available from: https://www.mdpi.com/1424-8220/20/5/1388. doi: 10.3390/s20051388.
  • Cantoral-Ceballos JA, Nurgiyatna N, Wright P, et al. Intelligent carpet system, based on photonic guided-path tomography, for gait and balance monitoring in home environments. IEEE Sensors J. 2015;15(1):279–289. doi: 10.1109/JSEN.2014.2341455.
  • Chen Z, Lau D, Teo JT, et al. Simultaneous measurement of breathing rate and heart rate using a microbend multimode fiber optic sensor. J Biomed Opt. 2014;19(5):057001. 57001. doi: 10.1117/1.JBO.19.5.057001.
  • Chen X, Tong X, Zhang C, et al. High-precision optical fiber Fabry-Perot composite sensor for pressure and temperature. Opt Commun. 2022;506:127580. doi: 10.1016/j.optcom.2021.127580.
  • Arute V, Syed A, Khandelwal A. Time-space-weight calibrated plastic optical fiber-based pressure sensing carpet. Opt Eng. 2021;60(09):094106. doi: 10.1117/1.OE.60.9.094106.
  • Costilla-Reyes O, Scully P, Ozanyan KB. Temporal pattern recognition in gait activities recorded with a footprint imaging sensor system. IEEE Sensors J. 2016;16(24):8815–8822. doi: 10.1109/JSEN.2016.2583260.
  • Lakho R, Yi-Fan Z, Jin-Hua J, et al. A smart insole for monitoring plantar pressure based on the fiber Bragg grating sensing technique. Text Res J. 2019;89(17):3433–3446. doi: 10.1177/0040517519833977.
  • Scully P, Reyes OC, Ahmed N, et al. POF sensing grid: signal analysis to extract human motion characteristics. 25th International Conference on Plastic Optical Fibres; Birmingham, UK, 2016.
  • Cheng J, Zhou B, Sundholm M, et al. Smart chair: what can simple pressure sensors under the chairs’ legs tell us about user activity?; 7th International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies (UBICOMM 2013); Porto, Portugal, 2013.
  • Ma C, Li W, Gravina R, et al. Posture detection based on smart cushion for wheelchair users. Sensors. 2017;17(4):719. Available from: https://www.mdpi.com/1424-8220/17/4/719. doi: 10.3390/s17040719.
  • Roh J, Park H-J, Lee K, et al. Sitting posture monitoring system based on a low-cost load cell using machine learning. Sensors. 2018;18(2):208. Available fromhttps://www.mdpi.com/1424-8220/18/1/208. doi: 10.3390/s18010208.
  • Liao DY. Collaborative, social-networked posture training with posturing monitoring and biofeedback. 19th International Conference on Enterprise Information Systems (ICEIS 2017); Porto, Portugal,2018. p. 158-165. doi: 10.5772/intechopen.74791
  • Ahmad J, Sidén J, Andersson H. A proposal of implementation of sitting posture monitoring system for wheelchair utilizing machine learning methods. Sensors. 2021;21(19):6349. Available fromhttps://www.mdpi.com/1424-8220/21/19/6349. doi: 10.3390/s21196349.
  • Steele AM, Nourani M, Bopp MM, et al. A multi-modal approach to patient activity monitoring. 2020 IEEE International Conference on Healthcare Informatics (ICHI); Oldenburg, Germany, 2020. p. 1–6. doi: 10.1109/ICHI48887.2020.9374362.
  • Low-cost plastic optical fiber integrated with smartphone for human physiological monitoring. Opt Fiber Technol. 2022;71:102947.
  • Ding L, Yu L, Hu G, et al. Knee joint curvature detection system based on fiber optic Mach-Zendler interferometric curvature sensor. IEEE Sensors J. 2021;21(24):28017–28024. doi: 10.1109/JSEN.2021.3121430.
  • van den Boom H, Raz O, Koonen T. A robust and low-cost 2-dimensional pressure sensing system using polymer optical fibre. 2020 European Conference on Optical Communications (ECOC); Brussels, Belgium, 2020. p. 1–4. doi: 10.1109/ECOC48923.2020.9333355.
  • Goulding T, Yu N, Deligiannidis L. Understanding wheelchair occupant posture and dynamics prior to egress from a wheelchair. 2017 International Conference on Computational Science and Computational Intelligence (CSCI); Las Vegas, NV, USA, 2017. p. 1702–1706. doi: 10.1109/CSCI.2017.296.
  • Ahmad J, Andersson H, Sidén J. Screen-printed piezoresistive sensors for monitoring pressure distribution in wheelchair. IEEE Sensors J. 2019;19(6):2055–2063. doi: 10.1109/JSEN.2018.2885638.
  • Hanafusa A, Ouki K, Miyazaki K, et al. Wheelchair seating evaluation system introduction of system functions. 2012;11:307–312.
  • Tavares C, Domingues MF, Paixao T, et al. Wheelchair pressure ulcer prevention using FBG based sensing devices. Sensors. 2019;20(1):212. Available from: https://www.mdpi.com/1424-8220/20/1/212. doi: 10.3390/s20010212.
  • Tavares C, Real D, Domingues MdF, et al. Sensor cell network for pressure, temperature and position detection on wheelchair users. IJERPH. 2022;19(4):2195. doi: 10.3390/ijerph19042195.
  • Rocha M, Tavares C, Nepomuceno C, et al. FBGs based system for muscle effort monitoring in wheelchair users. IEEE Sensors J. 2022;22(13):12886–12893. doi: 10.1109/JSEN.2022.3177889.
  • Rocha M, Tavares C, Nepomuceno AC, et al. Monitoring of the muscle effort in wheelchair users using FBG based sensors. 2022 Optical Sensing and Detection Conference (SPIE Photonics Europe); Strasbourg, France, 2022. p.12139. doi: 10.1117/12.2621254.
  • Kominami Y. J.P. (2000). Contact pressure blood flow sensor. (J.P. Patent No. JP2002119487A). Japan Patent and Trademark Office. https://patents.google.com/patent/JP2002119487A.
  • Hu X, Li Q, Zhu Y, et al. (2018). Modularization vital sign monitoring intelligence wheelchair. (C.N. Patent No. CN110604651A) C.N. Patent and Trademark Office. https://patents.google.com/patent/CN110604651A.
  • Zhao X, Yang X, Zhu Q. (2019). Wheelchair speed monitoring and testing system. (C.N. Patent No. CN210269893U) C.N. Patent and Trademark Office. https://patents.google.com/patent/CN210269893U.
  • Wei-Chih W, Per R. (2005). Polymer based distributive waveguide sensor for pressure and shear measurement. (U.S. Patent No. US7512294B2) U.S. Patent and Trademark Office. https://patents.google.com/patent/US7512294B2.
  • Edward S. (2015). Patient monitoring systems and methods. (U.S. Patent No. US9814637B2) U.S. Patent and Trademark Office. https://patents.google.com/patent/US9814637B2
  • Bastos-Filho TF, Cheein FA, Müller SMT, et al. Towards a new modality-independent interface for a robotic wheelchair. IEEE Trans Neural Syst Rehabil Eng. 2014;22(3):567–584. doi: 10.1109/TNSRE.2013.2265237.
  • Yang W, Tang Y, Wang Q, et al. A control system of electric wheelchair. IOP Conf Ser Mater Sci Eng. 2020;740(1):012009. doi: 10.1088/1757-899X/740/1/012009.
  • Al Nabulsi J. A novel approach to wheelchair design and operation using multi-function controller. J Comput Sci. 2020;16:1029–1041.
  • Riman C. Multi-controlled wheelchair for upper extremities disability. J Mechatron Robot. 2018 01;2(1):121–131. doi: 10.3844/jmrsp.2018.121.131.
  • Niitsuma M, Ochi T, Yamaguchi M, et al. Design of mutual interaction between a user and smart electric wheelchair. J Adv Comput Intell Intell Inform. 2012;16(2):305–312. doi: 10.20965/jaciii.2012.p0305.
  • Jia S, Yan J, Fan J, et al. Multimodal intelligent wheelchair control based on fuzzy algorithm. 2012 IEEE International Conference on Information and Automation; Shenyang, China, 2012. p. 582–587. doi: 10.1109/ICInfA.2012.6246880.
  • Irmak F, Baş S, Sızmaz M, et al. Management and treatment of pressure ulcers: clinical experience. Sisli Etfal Hastan Tip Bul. 2019;53(1):37–41. PMID33536824; Available from: doi: 10.14744/SEMB.2018.70973.
  • Tracey Y, Kennerly S, Kao L. Pressure injury prevention: outcomes and challenges to use of resident monitoring technology in a nursing home. J Wound Ostomy Continence Nurs. 2019;46(3):207–213. doi: 10.1097/WON.0000000000000523.
  • Quandt B, Braun F, Ferrario D, et al. Body-monitoring with photonic textiles: a reflective heartbeat sensor basedon polymer optical fibres. J R Soc Interface. 2017;14(128):20170060. Available fromhttps://royalsocietypublishing.org/doi/10<?sch-permit JATS-0034-007?>.1098/rsif.2017.0060. doi: 10.1098/rsif.2017.0060.
  • Chung P, Rowe A, Etemadi M, et al. Fabric-based pressure sensor array for decubitus ulcer monitoring. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Osaka, Japan, 2013. p. 6506–6509. doi: 10.1109/EMBC.2013.6611045.
  • Pickham D, Berte N, Pihulic M, et al. Effect of a wearable patient sensor on care delivery for preventing pressure injuries in acutely ill adults: a pragmatic randomized clinical trial (ls-hapi study). Int J Nurs Stud. 2018;80:12–19. Available from: https://www.sciencedirect.com/science/article/pii/S0020748917302869. doi: 10.1016/j.ijnurstu.2017.12.012.
  • Majerus SJA, Lerchbacker J, Barbaro D, et al. Power wheelchair footplate pressure and positioning sensor. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Honolulu, HI, USA, 2018. p. 4367–4370. doi: 10.1109/EMBC.2018.8513373.
  • Carrigan W, Nuthi P, Pande C, et al. Design and operation verification of an automated pressure mapping and modulating seat cushion for pressure ulcer prevention. Med Eng Phys. 2019;69:17–27. Available fromhttps://www.sciencedirect.com/science/article/pii/S1350453319301006. doi: 10.1016/j.medengphy.2019.06.006.
  • Najafi B, Singh Grewal G, Parvaneh S, et al. Validation of an optical fiber based smart textile: a clinical tool for predicting diabetic foot ulceration. 14th Foundation Annual Research Conference Proceedings, Qatar, 2014. p. 1. doi: 10.5339/qfarc.2014.HBPP0345.
  • Arias S, Cardiel E, Rogeli P, et al. An alternating pressure sequence proposal for an air-cell cushion for preventing pressure ulcers. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Chicago, IL, USA, 2014. p. 3480–3483. doi: 10.1109/EMBC.2014.6944372.
  • Hickle K, Slamin R, Baez A, et al. Wireless pressure ulcer sensor. Ann Plast Surg. 2019;82(4S):S215–S221. doi: 10.1097/SAP.0000000000001882.
  • Tsiokos D, Kanellos GT, Papaioannou G, et al. Fiber optic-based pressure sensing surface for skin health management in prosthetic and rehabilitation interventions. In: hudak R, Penhaker M, Majernik J, editors. Biomedical engineering. Chapter 11. Rijeka: IntechOpen; 2012. Available from: doi: 10.5772/50574.
  • Ochoa M, Algorri JF, Roldán-Varona P, et al. Recent advances in biomedical photonic sensors: a focus on optical-fibre-based sensing. Sensors. 2021;21(19):6469. Available fromhttps://www.mdpi.com/1424-8220/21/19/6469. doi: 10.3390/s21196469.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.