120
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Relationship between rolling resistance, preferred speed, and manual wheelchair propulsion mechanics in non-disabled adults

ORCID Icon & ORCID Icon
Pages 1980-1991 | Received 18 Sep 2022, Accepted 17 Jul 2023, Published online: 26 Jul 2023

References

  • Ballinger DA, Rintala DH, Hart KA. The relation of shoulder pain and range-of-motion problems to functional limitations, disability, and perceived health of men with spinal cord injury: a multifaceted longitudinal study. Arch Phys Med Rehabil. 2000;81(12):1575–1581. doi: 10.1053/apmr.2000.18216.
  • Pentland WE, Twomey LT. Upper limb function in persons with long term paraplegia and implications for independence: part I. Paraplegia. 1994;32(4):211–218. doi: 10.1038/sc.1994.40.
  • Dalyan M, Cardenas DD, Gerard B. Upper extremity pain after spinal cord injury. Spinal Cord. 1999;37(3):191–195. doi: 10.1038/sj.sc.3100802.
  • Veeger HE, Meershoek LS, van der Woude LH, et al. Wrist motion in handrim wheelchair propulsion. J Rehabil Res Dev. 1998;35(3):305–313.
  • Asheghan M, Hollisaz MT, Taheri T, et al. The prevalence of carpal tunnel syndrome among long-term manual wheelchair users with spinal cord injury: a cross-sectional study. J Spinal Cord Med. 2016;39(3):265–271. doi: 10.1179/2045772315Y.0000000033.
  • Yang J, Boninger ML, Leath JD, et al. Carpal tunnel syndrome in manual wheelchair users with spinal cord injury: a cross-sectional multicenter study. Am J Phys Med Rehabil. 2009;88(12):1007–1016. doi: 10.1097/PHM.0b013e3181bbddc9.
  • Pepke W, Brunner M, Abel R, et al. Risk factors for the development of rotator cuff tears in individuals with paraplegia: a cross-sectional study. Orthopade. 2018;47(7):561–566. doi: 10.1007/s00132-018-3546-3.
  • Paralyzed veterans of America consortium for spinal cord M. Preservation of upper limb function following spinal cord injury: a clinical practice guideline for health-care professionals. J Spinal Cord Med. 2005;28(5):434–470.
  • Mulroy S, Newsam J, Bontrager E. editor. Impact of wheelchair propulsion biomechanics on development of shoulder pain in individuals with spinal cord injury. First Joint ESMAC-GCMAS Meeting; 2006 Sept 27–30 2006; Amsterdam, The Netherlands: gait & Posture. doi: 10.1016/j.gaitpost.2006.11.029.
  • Roquelaure Y, Mechali S, Dano C, et al. Occupational and personal risk factors for carpal tunnel syndrome in industrial workers. Scand J Work Environ Health. 1997;23(5):364–369. doi: 10.5271/sjweh.233.
  • Silverstein BA, Fine LJ, Armstrong TJ. Occupational factors and carpal tunnel syndrome. Am J Ind Med. 1987;11(3):343–358. doi: 10.1002/ajim.4700110310.
  • Frost P, Bonde JP, Mikkelsen S, et al. Risk of shoulder tendinitis in relation to shoulder loads in monotonous repetitive work. Am J Ind Med. 2002;41(1):11–18. doi: 10.1002/ajim.10019.
  • Andersen JH, Kaergaard A, Frost P, et al. Physical, psychosocial, and individual risk factors for neck/shoulder pain with pressure tenderness in the muscles among workers performing monotonous, repetitive work. Spine (Phila Pa 1976). 2002;27(6):660–667. doi: 10.1097/00007632-200203150-00017.
  • Boninger ML, Cooper RA, Baldwin MA, et al. Wheelchair pushrim kinetics: body weight and median nerve function. Arch Phys Med Rehabil. 1999;80(8):910–915. doi: 10.1016/s0003-9993(99)90082-5.
  • Beirens BJH, Bossuyt FM, Arnet U, et al. Shoulder pain is associated with rate of rise and jerk of the applied forces during wheelchair propulsion in individuals with paraplegic spinal cord injury. Arch Phys Med Rehabil. 2021;102(5):856–864. doi: 10.1016/j.apmr.2020.10.114.
  • Ott J, Pearlman J. Scoping review of the rolling resistance testing methods and factors that impact manual wheelchairs. J Rehabil Assist Technol Eng. 2021;8:2055668320980300. doi: 10.1177/2055668320980300.
  • Cowan RE, Nash MS, Collinger JL, et al. Impact of surface type, wheelchair weight, and axle position on wheelchair propulsion by novice older adults. Arch Phys Med Rehabil. 2009;90(7):1076–1083. doi: 10.1016/j.apmr.2008.10.034.
  • Richter WM, Rodriguez R, Woods KR, et al. Stroke pattern and handrim biomechanics for level and uphill wheelchair propulsion at self-selected speeds. Arch Phys Med Rehabil. 2007;88(1):81–87. doi: 10.1016/j.apmr.2006.09.017.
  • Koontz AM, Cooper RA, Boninger ML, et al. A kinetic analysis of manual wheelchair propulsion during start-up on select indoor and outdoor surfaces. J Rehabil Res Dev. 2005;42(4):447–458. doi: 10.1682/jrrd.2004.08.0106.
  • de Groot S, Vegter RJ, van der Woude LH. Effect of wheelchair mass, tire type and tire pressure on physical strain and wheelchair propulsion technique. Med Eng Phys. 2013;35(10):1476–1482. doi: 10.1016/j.medengphy.2013.03.019.
  • Hoffman MD, Millet GY, Hoch AZ, et al. Assessment of wheelchair drag resistance using a coasting deceleration technique. Am J Phys Med Rehabil. 2003;82(11):880–889. doi: 10.1097/01.PHM.0000091980.91666.58.
  • McLaurin CA, Brubaker CE. Biomechanics and the wheelchair. Prosthet Orthot Int. 1991;15(1):24–37. doi: 10.3109/03093649109164272.
  • Hashizume T, Kitagawa H, Ueda H, et al. Efficiency and rolling resistance in manual wheelchair propulsion. Stud Health Technol Inform. 2017;242:778–781.
  • Pavlidou E, Kloosterman MG, Buurke JH, et al. Rolling resistance and propulsion efficiency of manual and power-assisted wheelchairs. Med Eng Phys. 2015;37(11):1105–1110. doi: 10.1016/j.medengphy.2015.08.012.
  • Sauret C, Bascou J, de Saint Remy N, et al. Assessment of field rolling resistance of manual wheelchairs. J Rehabil Res Dev. 2012;49(1):63–74. doi: 10.1682/jrrd.2011.03.0050.
  • Lemaire ED, Lamontagne M, Barclay HW, et al. A technique for the determination of center of gravity and rolling resistance for tilt-seat wheelchairs. J Rehabil Res Dev. 1991;28(3):51–58. doi: 10.1682/jrrd.1991.07.0051.
  • van Drongelen S, Arnet U, Veeger DH, et al. Effect of workload setting on propulsion technique in handrim wheelchair propulsion. Med Eng Phys. 2013;35(3):283–288. doi: 10.1016/j.medengphy.2012.04.017.
  • van der Woude LH, Geurts C, Winkelman H, et al. Measurement of wheelchair rolling resistance with a handle bar push technique. J Med Eng Technol. 2003;27(6):249–258. doi: 10.1080/0309190031000096630.
  • Sprigle S, Huang M. Manual wheelchair propulsion cost across different components and configurations during straight and turning maneuvers. J Rehabil Assist Technol Eng. 2020;7:2055668320907819. doi: 10.1177/2055668320907819.
  • Bakdash JZ, Marusich LR. Repeated measures correlation. Front Psychol. 2017;8:456. doi: 10.3389/fpsyg.2017.00456.
  • Fritsch C. How was studied the effect of manual wheelchair configuration on propulsion biomechanics: a systematic review on methodologies. Frontiers Rehab Serv. 2022;3:863113.
  • Klaesner J, Morgan KA, Gray DB. The development of an instrumented wheelchair propulsion testing and training device. Assist Technol. 2014;26(1):24–32. doi: 10.1080/10400435.2013.792020.
  • Morgan KA, Engsberg JR, Klaesner. The testing of an instrumented wheelchair propulsion testing and training device. J Phys Med Rehabil Disabil. 2015;1:003. doi: 10.24966/PMRD-8670/100003
  • Gauthier C, Grangeon M, Ananos L, et al. Quantifying cardiorespiratory responses resulting from speed and slope increments during motorized treadmill propulsion among manual wheelchair users. Ann Phys Rehabil Med. 2017;60(5):281–288. doi: 10.1016/j.rehab.2017.02.007.
  • Hutchinson MJ, Kilgallon JW, Leicht CA, et al. Perceived exertion responses to wheelchair propulsion differ between novice able-bodied and trained wheelchair sportspeople. J Sci Med Sport. 2020;23(4):403–407. doi: 10.1016/j.jsams.2019.10.012.
  • van der Woude LH, Veeger HE, Dallmeijer AJ, et al. Biomechanics and physiology in active manual wheelchair propulsion. Med Eng Phys. 2001;23(10):713–733. doi: 10.1016/s1350-4533(01)00083-2.
  • Jones PR. A note on detecting statistical outliers in psychophysical data. Atten Percept Psychophys. 2019;81(5):1189–1196. doi: 10.3758/s13414-019-01726-3.
  • Akoglu H. User’s guide to correlation coefficients. Turk J Emerg Med. 2018;18(3):91–93. doi: 10.1016/j.tjem.2018.08.001.
  • Obesity, preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894:i-xii, 1–253.
  • DeVivo MJ, Krause JS, Lammertse DP. Recent trends in mortality and causes of death among persons with spinal cord injury. Arch Phys Med Rehabil. 1999;80(11):1411–1419. doi: 10.1016/s0003-9993(99)90252-6.
  • Lemons VR, Wagner FC. Jr. Respiratory complications after cervical spinal cord injury. Spine (Phila Pa 1976). 1994;19(20):2315–2320. doi: 10.1097/00007632-199410150-00011.
  • Tollefsen E, Fondenes O. Respiratory complications associated with spinal cord injury. Tidsskr nor Laegeforen. 2012;132(9):1111–1114. doi: 10.4045/tidsskr.10.0922.
  • Rammer JR, Krzak JJ, Slavens BA, et al. Considering propulsion pattern in therapeutic outcomes for children who use manual wheelchairs. Pediatr Phys Ther. 2019;31(4):360–368. doi: 10.1097/PEP.0000000000000649.
  • Rankin JW, Kwarciak AM, Richter WM, et al. The influence of wheelchair propulsion technique on upper extremity muscle demand: a simulation study. Clin Biomech (Bristol, Avon). 2012;27(9):879–886. doi: 10.1016/j.clinbiomech.2012.07.002.
  • Sanderson DJ, Sommer HJ. Kinematic features of wheelchair propulsion. J Biomech. 1985;18(6):423–429. doi: 10.1016/0021-9290(85)90277-5.
  • Veeger HE, van der Woude LH, Rozendal RH. Load on the upper extremity in manual wheelchair propulsion. J Electromyogr Kinesiol. 1991;1(4):270–280. doi: 10.1016/1050-6411(91)90014-V.
  • Veeger HE, van der Woude LH, Rozendal RH. Effect of handrim velocity on mechanical efficiency in wheelchair propulsion. Med Sci Sports Exerc. 1992;24(1):100–107.
  • Bertolaccini GdS, Carvalho Filho IFPd, Christofoletti G, et al. The influence of axle position and the use of accessories on the activity of upper limb muscles during manual wheelchair propulsion. Int J Occup Saf Ergon. 2018;24(2):311–315. doi: 10.1080/10803548.2017.1294369.
  • Sprigle S, Huang M, Misch J. Measurement of rolling resistance and scrub torque of manual wheelchair drive wheels and casters. Assist Technol. 2022;34(1):91–103. doi: 10.1080/10400435.2019.1697907.
  • Kotajarvi BR, Sabick MB, An KN, et al. The effect of seat position on wheelchair propulsion biomechanics. J Rehabil Res Dev. 2004;41(3B):403–414. doi: 10.1682/jrrd.2003.01.0008.
  • Sawatzky BJ, Denison I. Wheeling efficiency: the effects of varying tyre pressure with children and adolescents. Pediatr Rehabil. 2006;9(2):122–126. doi: 10.1080/13638490500126707.
  • Hurd WJ, Morrow MM, Kaufman KR, et al. Influence of varying level terrain on wheelchair propulsion biomechanics. Am J Phys Med Rehabil. 2008;87(12):984–991. doi: 10.1097/PHM.0b013e31818a52cc.
  • Rozendaal LA, Veeger HE, van der Woude LH. The push force pattern in manual wheelchair propulsion as a balance between cost and effect. J Biomech. 2003;36(2):239–247. doi: 10.1016/s0021-9290(02)00320-2.
  • Chenier F, Champagne A, Desroches G, et al. Unmatched speed perceptions between overground and treadmill manual wheelchair propulsion in long-term manual wheelchair users. Gait Posture. 2018;61:398–402. doi: 10.1016/j.gaitpost.2018.02.009.
  • Chan FHN, Eshraghi M, Alhazmi MA, et al. The effect of caster types on global rolling resistance in manual wheelchairs on indoor and outdoor surfaces. Assist Technol. 2018;30(4):176–182. doi: 10.1080/10400435.2017.1307880.
  • Zepeda R, Chan F, Sawatzky B. The effect of caster wheel diameter and mass distribution on drag forces in manual wheelchairs. J Rehabil Res Dev. 2016;53(6):893–900. doi: 10.1682/JRRD.2015.05.0074.
  • Hillman M. Wheelchair wheels for use on sand. Med Eng Phys. 1994;6(3):243–247. doi: 10.1016/1350-4533(94)90044-2.
  • Rice IM, Pohlig RT, Gallagher JD, et al. Handrim wheelchair propulsion training effect on overground propulsion using biomechanical real-time visual feedback. Arch Phys Med Rehabil. 2013;94(2):256–263. doi: 10.1016/j.apmr.2012.09.014.
  • Richter WM, Kwarciak AM, Guo L, et al. Effects of single-variable biofeedback on wheelchair handrim biomechanics. Arch Phys Med Rehabil. 2011;92(4):572–577. doi: 10.1016/j.apmr.2010.11.001.
  • van der Woude LH, Bouw A, van Wegen J, et al. Seat height: effects on submaximal hand rim wheelchair performance during spinal cord injury rehabilitation. J Rehabil Med. 2009;41(3):143–149. doi: 10.2340/16501977-0296.
  • Oliveira N, Blochlinger S, Ehrenberg N, et al. Kinematics and pushrim kinetics in adolescents propelling high-strength lightweight and ultra-lightweight manual wheelchairs. Disabil Rehabil Assist Technol. 2019;14(3):209–216. doi: 10.1080/17483107.2017.1417499.
  • Bohannon RW, Glenney SS. Minimal clinically important difference for change in comfortable gait speed of adults with pathology: a systematic review. J Eval Clin Pract. 2014;20(4):295–300. doi: 10.1111/jep.12158.
  • Stephens CL, Engsberg JR. Comparison of overground and treadmill propulsion patterns of manual wheelchair users with tetraplegia. Disabil Rehabil Assist Technol. 2010;5(6):420–427. doi: 10.3109/17483101003793420.
  • de Klerk R, Velhorst V, Veeger D, et al. Physiological and biomechanical comparison of overground, treadmill, and ergometer handrim wheelchair propulsion in able-bodied subjects under standardized conditions. J Neuroeng Rehabil. 2020;17(1):136.
  • Sprigle S, Huang M, Lin JT. Inertial and frictional influences of instrumented wheelchair wheels. J Rehabil Assist Technol Eng. 2016;3:2055668316649892. doi: 10.1177/2055668316649892.
  • Hurd WJ, Morrow MM, Kaufman KR, et al. Biomechanic evaluation of upper-extremity symmetry during manual wheelchair propulsion over varied terrain. Arch Phys Med Rehabil. 2008;89(10):1996–2002. doi: 10.1016/j.apmr.2008.03.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.