518
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Bonding degradation and stress–dilatancy response of weakly cemented sands

&
Pages 221-233 | Received 23 Jun 2016, Accepted 22 Jun 2017, Published online: 05 Jul 2017

References

  • ASTM D 4767-11, 2011. Standard test m method for consolidated undrained triaxial compression test for cohesive soils. West Conshohocken, PA: ASTM International.
  • Baudet, B. and Stallebrass, S., 2004. A constitutive model for structured clays. Géotechnique, 54 (4), 269—278. doi:10.1680/geot.2004.54.4.269
  • Cecconi, M., and Viggiani, G.MB., 2001. Structural features and mechanical behaviour of a pyroclastic weak rock. International Journal For Numerical And Analytical Methods In Geomechanics, 25 (15), 1525–1557. doi: 10.1007/978-3-642-74864-6
  • Clough, G.W. and Sitar, N., 1981. Cemented sands under static loading. Journal of Geotechnical Engineering ASCE, 107 (GT6), 799–817.
  • Consoli, N.C., et al., 2012. Influence of cement-voids ratio on stress-dilatancy behavior of artificially cemented sand. Journal of Geotechnical and Geoenvironmental Engineering, 138 (1), 100–109. doi:10.1061/(ASCE)GT.1943-5606.0000565
  • Coop, M.R. and Atkinson, J.H., 1993. The mechanics of cemented carbonate sands. Géotechnique, 43, 53–67. doi:10.1680/geot.1993.43.1.53
  • Coop, M.R., 2005. On the mechanics of reconstituted and natural sands. In: D. Benedetto, et al., eds. Proceedings of deformation characteristics of geomaterials. London: Taylor & Francis Group, 29–58.
  • Coop, M.R. and Willson, S.M., 2003. Behavior of hydrocarbon reservoir sand and sandstones. Journal of Geotechnical and Geoenvironmental Engineering, 129 (11), 1010–1019. doi:10.1061/(ASCE)1090-0241(2003)129:11(1010)
  • Cuccovillo, T. and Coop, M.R., 1997. Yielding and pre-failure deformation of structured sands. Géotechnique, 47 (3), 491–508. doi:10.1680/geot.1997.47.3.491
  • Cuccovillo, T. and Coop, M.R., 1999. On the mechanics of structured sands. Géotechnique, 49 (6), 741–760. doi:10.1680/geot.1999.49.6.741
  • Cuccovillo, T. and Coop, M.R., 1993. The influence of bond strength on the mechanics of carbonate soft rocks. In: A. Anagnostopoulos, et al., eds. Proceedings of 1st international symposium on the geotechnics of of hard soils–soft rocks. Rotterdam: Balkema, Vol. 1, 447–455.
  • de Bono, J., McDowell, G., and Wanatowski, D., 2015. Investigating the micro mechanics of cemented sand using DEM. International Journal for Numerical and Analytical Methods in Geomechanics, 39 (6), 655–675. doi:10.1002/nag.2340
  • De Josselin De Jong, G., 1976. Rowe’s stress–dilatancy relation based on friction. Géotechnique, 26 (3), 527–534. doi:10.1680/geot.1976.26.3.527
  • DeSimone, A. and Tamagnini, C., 2005. Stress–dilatancy based modelling of granular materials and extensions to soils with crushable grains. International Journal for Numerical and Analytical Methods in Geomechanics, 29, 73–101. doi:10.1002/nag.405
  • Gao, Z. and Zhao, J., 2012. Constitutive modeling of artificially cemented sand by considering fabric anisotropy. Computers and Geotechnics, 41, 57–69. doi:10.1016/j.compgeo.2011.10.007
  • Gens, A. and Nova, R., 1993. Conceptual bases for a constitutive model for bonded soils and weak rocks. In: Proceedings of an international symposium under the auspices of the ISSMFE on geotechnical engineering hard soils-soft rocks, 20–23 September 1993, Athens, Greece, 1 ( 1), 485–494.
  • Hamidi, A. and Haeri, S.M., 2008. Stiffness and deformation characteristics of cemented gravely sands. International Journal of Civil Engineering, 6 (3), 159–173.
  • Huang, J.T. and Airey, D., 1993. Effects of cement and density on an artificially cemented sand. In: A. Anagnostopoulos, et al., eds. Proceedings of 1st international symposium on the geotechnics of of hard soils–soft rocks. Rotterdam: Balkema, Vol. 1, 553–560.
  • Ismail, M.A., et al., 2002. Effect of cement type on shear behaviour of cemented calcareous soil. Journal of Geotechnical and Geoenvironmental Engineering, 128 (6), 520–529. doi:10.1061/(ASCE)1090-0241(2002)128:6(520)
  • Lade, P.V. and Overton, D.D., 1989. Cementation effects in frictional materials. Journal of Geotechnical Engineering, 115 (10), 1373–1387. doi:10.1061/(ASCE)0733-9410(1989)115:10(1373)
  • Lagioia, R. and Nova, R., 1995. An experimental and theoretical study of the behaviour of a calcarenite in triaxial compression. Géotechnique, 45 (4), 633–648. doi:10.1680/geot.1995.45.4.633
  • Leroueil, S. and Vaughan, P.R., 1990. The general and congruent effects of structure in natural soils and weak rocks. Géotechnique, 40 (3), 467–488. doi:10.1680/geot.1990.40.3.467
  • Lo, S.C.R., Lade, P.V., and Wardani, S.P.R., 2003. An experimental study of the mechanics of two weakly cemented soils. Gèotechnical Testing Journal, 26 (3), Paper ID GTJ10405_263, 1–14.
  • Malandraki, V. and Toll, D.G., 2001. Triaxial tests on weakly bonded soil with changes in stress path. Journal of Geotechnical and Geoenvironmental Engineering, 127 (3), 282–291. doi:10.1061/(ASCE)1090-0241(2001)127:3(282)
  • Marri, A., Wanatowski, D., and Yu, H.S., 2012. Drained behaviour of cemented sand in high pressure triaxial compression tests. Geomechanics and Geoengineering: an International Journal, 7 (3), 159–174. doi:10.1080/17486025.2012.663938
  • Nova, R., Castellanza, R., and Tamagnini, C., 2003. A constitutive model for bonded geomaterials subject to mechanical and/or chemical degradation. International Journal Numerical Analysis Meth Geomech, 27, 705–732. doi:10.1002/nag.294
  • Porcino, D., Marcianò, V., and Granata, R., 2011. Undrained cyclic response of a silicate-grouted sand for liquefaction mitigation purposes. Geomechanics and Geoengineering an International Journal, 6 (3), 155–170. doi:10.1080/17486025.2011.560287
  • Porcino, D., Marcianò, V., and Granata, R., 2012. Static and dynamic properties of a lightly cemented silicate-grouted sand. Canadian Geotechnical Journal, 49 (10), 1117–1133. doi:10.1139/t2012-069
  • Porcino, D., Marcianò, V., and Granata, R., 2015. Cyclic liquefaction behaviour of a moderately cemented grouted sand under repeated loading. Soil Dynamics and Earthquake Engineering, 79 Part A, 36–46. doi:10.1016/j.soildyn.2015.08.006
  • Reddy, K.R. and Saxena, S.K., 1993. Effects of cementation on stress-strain and strength characteristics of sands. Soils and Foundations, 33 (4), 121–134. doi:10.3208/sandf1972.33.4_121
  • Rios, S., Viana da Fonseca, A., and Baudet, B.A., 2014. On the shearing behaviour of an artificially cemented soil. Acta Gèotechnica, 9 (2), 215–226. doi:10.1007/s11440-013-0242-7
  • Rotta, G.V., et al., 2003. Isotropic yielding in an artificially cemented soil cured under stress. Géotechnique, 53 (5), 493–501. doi:10.1680/geot.2003.53.5.493
  • Rouainia, M. and Wood, M.D., 2000. A kinematic hardening constitutive model for natural clays with loss of structure. Géotechnique, 50 (2), 153–164. doi:10.1680/geot.2000.50.2.153
  • Rowe, P.W., 1962. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 269 (1339), 500–527. doi:10.1098/rspa.1962.0193
  • Rowe, P.W., 1963. Stress-dilatancy, earth pressure, and slopes. Journal Soil Mechanisms Foundation Div ASCE, 89 (SM3), 37–61.
  • Schnaid, F., Prietto, P.D.M., and Consoli, N.C., 2001. Characterization of cemented sand in triaxial compression. Journal of Geotechnical and Geoenvironmental Engineering, 127 (10), 857–868. doi:10.1061/(ASCE)1090-0241(2001)127:10(857)
  • Vatsala, A., Nova, R., and Murthy, B., 2001. Elastoplastic model for cemented soils. Journal of Geotechnical and Geoenvironmental Engineering, 127 (8), 679–687. doi:10.1061/(ASCE)1090-0241(2001)127:8(679)
  • Vaughan, P.R., 1985. Mechanical and hydraulic properties of in-situ residual soils. In: Brazilian Society for Soil Mechanics, ed. Proceedings of the 1st international conference on geomechanics in tropical lateritic and saprolitic soils. Rotterdam, the Netherlands: A.A Balkema, Vol. 3, 231–263.
  • Wang, Y.H. and Leung, S.C., 2008a. A particulate-scale investigation of cemented sand behavior. Canadian Geotechnical Journal, 45 (1), 29–44. doi:10.1139/T07-070
  • Wang, Y.H. and Leung, S.C., 2008b. Characterization of cemented sand by experimental and numerical investigations. Journal of Geotechnical and Geoenvironmental Engineering, 134 (7), 992–1004. doi:10.1061/(ASCE)1090-0241(2008)134:7(992)
  • Yu, H.S., et al., 2005. Experimental evaluation and extension of a simple critical state model for sand. Granular Matter, 7 (4), 213–225. doi:10.1007/s10035-005-0209-y
  • Yu, H.S., Tan, S.M., and Schnaid, F., 2007. A critical state framework for modelling bonded geomaterials. Geomechanics and Geoengineering: an International Journal, 2 (1), 61–74. doi:10.1080/17486020601164275
  • Zhang, J. and Salgado, R., 2010. Stress–dilatancy relation for Mohr–Coulomb soils following a non-associated flow rule. Technical note. Géotechnique, 60 (3), 223–226. doi:10.1680/geot.8.T.039

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.