440
Views
0
CrossRef citations to date
0
Altmetric
Review

Significance of molecular-level behaviour incorporation in the constitutive models of expansive clays – a review

&
Pages 115-138 | Received 28 Mar 2016, Accepted 18 Dec 2017, Published online: 07 Feb 2018

References

  • Abduljauwad, S.N., et al., 1998. Laboratory and field studies of response of structures to heave of expansive clay. Geotechnique, 48 (1), 103–121. doi:10.1680/geot.1998.48.1.103
  • Abduljauwad, S.N. and Al-Sulaimani, G.J., 1993. Determination of swell potential of Al-Qatif clay. Geotechnical Testing Journal, 16 (4), 469–484.
  • Ahmed, H.R. 2015. Molecular level modeling of natural and compacted expansive clays. ( Ph.D. Dissertation). Saudi Arabia: Civil Engineering Department, King Fahd University of Petroleum & Minerals (KFUPM).
  • Ahmed, H.R. and Abduljauwad, S.N., 2016. Nano-level constitutive model for expansive clays. Geotechnique. doi:10.1680/jgeot.15.P.140
  • Alonso, E.E., Gens, A., and Hight, D.W. (1987), “Special problem soils, general report”, Proceedings 9th European Conference on Soil Mechanics, Dublin, vol. 3, pp. 1087–1146.
  • Alonso, E.E., Gens, A., and Josa, A., 1990. A constitutive model for partially saturated soils. Geotechnique, 40 (3), 405–430. doi:10.1680/geot.1990.40.3.405
  • Alonso, E.E., Vaunat, J., and Gens, A., 1999. Modeling the mechanical behavior of expansive clays. Engineering Geological, 54, 173–183. doi:10.1016/S0013-7952(99)00079-4
  • Arairo, W., et al., 2013. A new insight into modelling the behaviour of unsaturated soils. International Journal Numerical Analysis Methods Geomech, 37 (16), 2629–2654.
  • Aylmore, L.A.G. and Quirk, J.P., 1962. The structural status of clay systems. In: A. Swineford, ed. Proceedings of the 9th national conference on clays and clay minerals, 1960 West Lafayette, IN. New York: Pergamon Press, 104–130.
  • Bolt, G.H., 1956. Physico-chemical analysis of the compressibility of pure clays. Geotechnique, 6 (2), 86–93. doi:10.1680/geot.1956.6.2.86
  • Brooks, B.R., et al., 1983. CHARMM: a program for macromolecular energy, minmimization, and dynamics calculations. Journal Comparative Chemical, 4, 187–217. doi:10.1002/jcc.540040211
  • Cabidoche, Y.M. and Ruy, S., 2001. Field shrinkage curves of a swelling clay soil: analysis of multiple structural swelling and shrinkage phases in the prisms of a vertisol. Australian Journal of Soil Research, 39, 143–160. doi:10.1071/SR99132
  • Chapman, D.I., 1913. A contribution to the theory of electrocapillarity. Philosophical Magazine, 25 (6), 475–481.
  • Collins, K. and McGown, A., 1974. The form and function of microfabric features in a variety of natural soils. Geotechnique, 24 (2), 223–254. doi:10.1680/geot.1974.24.2.223
  • Coussy, O., Pereira, J.M., and Vaunat, J., 2010. Revisiting the thermodynamics of hardening plasticity for unsaturated soils. Comput Geotech, 37 (1), 207–215. doi:10.1016/j.compgeo.2009.09.003
  • Cui, Y.J. and Delage, P., 1996. Yielding and plastic behavior of an unsaturated compacted silt. Geotechnique, 46 (2), 291–311. doi:10.1680/geot.1996.46.2.291
  • Cui, Y.J., Yahia-Aissa, M., and Delage, P., 2002. A model for the volume change behaviour of heavily compacted swelling clays. Engineering Geology, 64 (2), 233–250.
  • Cygan, R.T., Liang, J.J., and Kalinichev, A.G., 2004. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. Journal Physical Chemical, B 108, 1255. doi:10.1021/jp0363287
  • Delage, P. and Graham, J., 1996. Mechanical behavior of unsaturated soils: understanding the behavior of unsaturated soils requires reliable conceptual models. In: EE Alonso and P. Delage, eds. Proceedings of 1st International Conference on Unsaturated Soils. Paris: Balkema Presses des Ponts et Chaussees, Vol. 3, 1223–1256.
  • El Sohby, M.A. and Rabba, E.A., 1981. Some factors affecting the swelling of clayey soils. Geotechnical Engineering, 12, 19–39.
  • Fityus, S. and Buzzi, O., 2008. The place of expansive clays in the framework of unsaturated soil mechanics. Applied Clay Science, 43 (2), 150–155. doi:10.1016/j.clay.2008.08.005
  • Fredlund, D.G., 1979. Appropriate concepts and technology for unsaturated soils. Canadian Geotechnical Journal, 16, 121–139. doi:10.1139/t79-011
  • Fredlund, D.G. and Morgenstern, N.R., 1977. Stress state variables for unsaturated soils. Journal of Geotechnical Engineering Division, ASCE, 103 (GT5), 447–466.
  • Fuentes, W. and Triantafyllidis, T., 2013. Hydro-mechanical hypoplastic models for unsaturated soils under isotropic stress conditions. Comput Geotech, 51, 72–82. doi:10.1016/j.compgeo.2013.02.002
  • Gens, A. and Alonso, E.E., 1992. A framework for the behavior of unsaturated expansive clays. Canadian Geotechnical Journal, 29, 1013–1032. doi:10.1139/t92-120
  • Ghasemzadeh, H. and Ghoreishian, A.S.A., 2013. A hydro-mechanical elastoplastic model for unsaturated soils under isotropic loading conditions. Comput Geotech, 51, 91–100. doi:10.1016/j.compgeo.2013.02.006
  • Gouy, G., 1910. Sur la constitution de la charge electrique a la surface d’un electrolyte. Annales De Physique (Paris), Series 4, 9, 457–468.
  • Guimares, L.D., et al., 2013. A chemo-mechanical constitutive model accounting for cation exchange in expansive clays. Geotechnique, 63 (3), 221–234. doi:10.1680/geot.SIP13.P.012
  • Hu, R., et al., 2013. A water retention curve and unsaturated hydraulic conductivity model for deformable soils: consideration of the change in pore size distribution. Géotechnique, 63 (16), 1389–1405. doi:10.1680/geot.12.P.182
  • Hu, R., et al., 2014. A constitutive model for unsaturated soils with consideration of inter-particle bonding. Comput Geotech, 59, 127–144. doi:10.1016/j.compgeo.2014.03.007
  • Hua, R., et al., 2015. A coupled stress–strain and hydraulic hysteresis model for unsaturated soils: thermodynamic analysis and model evaluation. Computers and Geotechnics, 63, 159–170. doi:10.1016/j.compgeo.2014.09.006
  • Humphrey, W., Dalke, A., and Schulten, K., 1996. VMD: visual molecular dynamics. Journal of Molecular Graphics, 14 (1), 33–35. doi:10.1016/0263-7855(96)00018-5
  • Ichikawa, Y., et al., 2002. Molecular dynamics and multiscale homogenization analysis of seepage-diffusion problem in bentonite clay. International Journal of Numerical Methods in Engineering, 54, 1717–1749. doi:10.1002/nme.488
  • Karaborni, S., et al., 23 February 1996. The swelling of clays: molecular simulations of the hydration of montmorillonite. Science, 271, 1102–1104. doi:10.1126/science.271.5252.1102
  • Katti, D.R., et al., 2005. Modeling response of pyrophyllite clay interlayer to applied stress using steered molecular dynamics. Clays and Clay Minerals, 53 (2), 171–178. doi:10.1346/CCMN.2005.0530207
  • Katti, D.R., et al., 2009. Multiscale modeling of swelling clays: a computational and experimental approach. KSCE Journal of Civil Engineering, 13 (4), 243‐255. doi:10.1007/s12205-009-0243-0
  • Katti, D.R., et al., 2011. An insight into role of clay-fluid molecular interactions on the microstructure and Macroscale properties of swelling clay. In: Alonso and Gens, eds. Unsaturated soils. London: Taylor and Francis Group.
  • Kohgo, Y., Nakano, M., and Miyazaki, T., 1993. Theoretical aspects of constitutive modelling for unsaturated soils. Soils Foundation, 33 (4), 49–63. doi:10.3208/sandf1972.33.4_49
  • Laird, D.A., 2006. Influence of layer charge on swelling of smectites. Applied Clay Science, 34, 74–87. doi:10.1016/j.clay.2006.01.009
  • Lambe, T.W., 1958. The structure of compacted clay. Journal of Soil Mechanics and Foundations Division, ASCE, 84 (SM2), 1654.
  • Li, X., 2007a. Thermodynamics-based constitutive framework for unsaturated soils. 1: theory. Géotechnique, 57 (5), 411–422. doi:10.1680/geot.2007.57.5.411
  • Li, X., 2007b. Thermodynamics-based constitutive framework for unsaturated soils. 2. A basic triaxial model. Géotechnique, 57 (5), 423–435. doi:10.1680/geot.2007.57.5.423
  • Likos, W.J. and Lu, N., 2006. Pore scale analysis of bulk volume change from crystalline swelling in Na+- and Ca2+-smectite. Clays and Clay Minerals, 54 (4), 516–529. doi:10.1346/CCMN.2006.0540412
  • Liu, C. and Muraleetharan, K.K., 2012. Coupled hydro-mechanical elastoplastic constitutive model for unsaturated sands and silts. I Formulation. International Journal Geomech, 12 (3), 239–247. doi:10.1061/(ASCE)GM.1943-5622.0000146
  • Lloret, A. and Alonso, E.E., 1985. State surfaces for partially saturated soils. Proceedings 11th Conference on Soil Mechanics and Foundation Engineering, Sand Francisco, 2, 557–562.
  • Lloret, M., Sánchez, M., and Wheeler, S.J., 2013. Formulation of a three-dimensional constitutive model for unsaturated soils incorporating mechanical–water retention couplings. International Journal Numerical Analysis Methods Geomech, 37 (17), 3008–3035. doi:10.1002/nag.2176
  • Madsen, F.T. and Muller-Vonmoos, M., 1989. The swelling behavior of clays. Applied Clay Science, 4, 143–156. doi:10.1016/0169-1317(89)90005-7
  • Marcial, D., Delage, P., and Cui, Y.J., 2002. On the high stress compression of bentonites. Canadian Geotechnical Journal, 39, 812–820. doi:10.1139/t02-019
  • Matyas, E.I. and Radhakrishna, H.S., 1968. Volume change characteristics of partially saturated soils. Geotechnique, 18 (4), 432–448. doi:10.1680/geot.1968.18.4.432
  • Meunier, A., 2006. Why are clays minerals small. Clay Minerals, 41, 551–566. doi:10.1180/0009855064120205
  • Miller, D.J. 1996. Osmotic suction as a valid stress state variable in unsaturated soils. ( Ph.D. dissertation). Fort Collins, CO: Colorado State University
  • Norrish, K., 1954. The swelling of montmorillonite. Transaction Faraday Society, 18, 120–134. doi:10.1039/df9541800120
  • Oades, J.M. and Waters, A.G., 1991. Aggregate hierarchy in soils. Australian Journal of Soil Research, 29, 815–828. doi:10.1071/SR9910815
  • Phillips, J.C., et al., 2005. Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26 (16), 1781–1802. doi:10.1002/jcc.20289
  • Pinyol, N., Vaunat, J., and Alonso, E.E., 2007. A constitutive model for soft clayey rocks that includes weathering effects. Geotechnique, 57 (2), 137–151. doi:10.1680/geot.2007.57.2.137
  • Plimton, S., 1995. Fast parallel algorithms for short-range molecular dynamics. Journal Comparative Physiology, 117 (1), 1–19. doi:10.1006/jcph.1995.1039
  • Ponder, J.W. 2011. Washington University, US. http://dasher.wustl.edu/
  • Pons, L.J. and Van Der Molen, W.H., 1977. Soil genesis under dewatering regimes during 1000 years of polder development. Soil Science, 116, 228–235. doi:10.1097/00010694-197309000-00011
  • Quirk, J.P. and Murray, R.S., 1991. Towards a model for soil structural behavior. Australian Journal of Soil Research, 29, 829–867. doi:10.1071/SR9910829
  • Robertson, H.E., Weir, A.H., and Woods, R.D., 1968. Morphology of particles in size fractionated Na montmorillonite. Clays and Clay Minerals, 16, 239–247. doi:10.1346/CCMN.1968.0160306
  • Romero, E. and Jommi, C., 2008. An insight into the role of hydraulic history on the volume changes of anisotropic clayey soils. Water Resources Research, 44 (12), 12–24. doi:10.1029/2007WR006558
  • Sanchez, M., et al., 2005. A double structure generalized plasticity model for expansive materials. International Journal for Numerical and Analytical Methods in Geomechanics, 29, 751–787. doi:10.1002/nag.434
  • Sato, H., Yamagishi, A., and Kawamura, K., 2001. Molecular simulation for flexibility of a single clay layer. Journal of Physics Chemistry, B 105, 7990–7997. doi:10.1021/jp004491l
  • Sharma, R.S. 1998. Mechanical Behavior of Unsaturated Highly Expansive Clays. ( Ph.D. Thesis). UK: Oxford University
  • Sheng, D., Fredlund, D.G., and Gens, A.A., 2008. New modelling approach for unsaturated soils using independent stress variables. Canada Geotech Journal, 45 (4), 511–534. doi:10.1139/T07-112
  • Sheng, D. and Zhou, A.N., 2011. Coupling hydraulic with mechanical models for unsaturated soils. Canada Geotech Journal, 48 (5), 826–840. doi:10.1139/t10-109
  • Shuai, F. and Fredlund, D.G., 1998. Model for the simulation of swelling-pressure measurements on expansive soils. Canada Geotech Journal, 35 (96), 114. doi:10.1139/t97-071
  • Skipper, N.T. 1992. MONTE user’s manual. Technical Report. UK: Department of Chemistry, University of Cambridge.
  • Skipper, N.T., Sposito, G., and Chang, F.R., 1995a. Monte Carlo simulations of interlayer molecular structure in swelling clay minerals 1. Methodology. Clays and Clay Minerals, 43 (3), 285‐293.
  • Skipper, N.T., Sposito, G., and Chang, F.R., 1995b. Monte Carlo simulations of interlayer molecular structure in swelling clay minerals 1. Monolayer hydrates. Clays and Clay Minerals, 43 (3), 294‐303.
  • Snethen, D.R., Johnson, L.D., and Patrick, D.M. 1977. An investigation of the natural microscale mechanisms that cause volume change in expansive clays. Federal Highway Administration Report No. FHWA-RD-77-75.
  • Stern, S., 1924. Modification in diffuse double layer theory. Z Elektrochem, 30, 508.
  • Sun, D.A., et al., 2000. An elasto-plastic model for unsaturated soil in three-dimensional stresses. Soils Foundation, 40 (3), 17–28. doi:10.3208/sandf.40.3_17
  • Sun, D.A., Sheng, D.C., and Sloan, S.W., 2007. Elastoplastic modelling of hydraulic and stressstrain behaviour of unsaturated soils. Mechanics of Materials : an International Journal, 39 (3), 212–221. doi:10.1016/j.mechmat.2006.05.002
  • Sun, W. and Sun, D., 2011. Coupled modeling of hydro-mechanical behavior of unsaturated compacted expansive soils. International Journal of Numerical and Analytical Methods in Geomechanics, 36 (8), 1002–1022. doi:10.1002/nag.1036
  • Tamagnini, R., 2004. An extended Cam-clay model for unsaturated soils with hydraulic hysteresis. Géotechnique, 54 (3), 223–228. doi:10.1680/geot.2004.54.3.223
  • Tao, L., et al., 2010. Swelling of K+, Na+ and Ca2+ ‐ montmorillonites and hydration of interlayer cations: a molecular dynamics simulation. Chinese Physical B, 19 (10), 109101. doi:10.1088/1674-1056/19/10/109101
  • Teppen, B.J., et al., 1997. Molecular dynamics modeling of clay minerals. 1. Gibbsite, kaolinite, pyrophyllite, and beidellite. Journal of Physical Chemistry B, 101, 1579–1587. doi:10.1021/jp961577z
  • Thomasson, A.J., 1978. Towards an objective classification of soil structure. Journal of Soil Science, 29, 38–46. doi:10.1111/ejs.1978.29.issue-1
  • Tourchi, S. and Hamidi, A., 2015. Thermo-mechanical constitutive modeling of unsaturated clays based on the critical state concepts. Journal of Rock Mechanics and Geotechnical Engineering, 7, 193–198. doi:10.1016/j.jrmge.2015.02.004
  • Tu, H. and Vanapali, S.K., 2016. Prediction of the variation of swelling pressure and one-dimensional heave of expansive soils with respect to suction using the soil-water retention curve as a tool. Canada Geotech Journal, 53, 1213–1234. doi:10.1139/cgj-2015-0222
  • Vaunat, J., Romero, E., and Jommi, C., 2000. An elastoplastic hydromechanical model for unsaturated soils. In: Tarantino & Mancuso (eds). Experimental evidence and theoretical approaches in unsaturated soils. Rotterdam: Balkema, 121–138.
  • Villar, M.V. 2000. Thermo-hydro-mechanical characterization of a bentonite from Cabode Gata. ( Ph.D. Thesis). Madrid, Spain: Universidad Complutense
  • Wang, G. and Wei, X., 2015. Modeling swelling-shrinkage behavior of compacted expansive soils during wetting-drying cycles. Canadian Geotechnical Journal, 52, 783–794. doi:10.1139/cgj-2014-0059
  • Wang, J., Sharma, A., and Gutierrez, S.M. (2007), Nanoscale simulations of rock and clay minerals”, ASCE Geotechnical Special Publication 173: Advances in Measurement and Modeling of Soil Behavior Geo-Denver 2007: New Peaks in Geotechnics
  • Wayllace, A. 2008. Volume change and swelling pressure of expansive clay in the Crystalline swelling regime. ( Ph.D. Thesis). USA: University of Missouri
  • Wheeler, S., Sharma, R., and Buisson, M., 2003. Coupling of hydraulic hysteresis and stress–strain behaviour in unsaturated soils. Géotechnique, 53 (1), 41–54. doi:10.1680/geot.2003.53.1.41
  • Wheeler, S. and Sivakumar, V., 1995. An elasto-plastic critical state framework for unsaturated soil. Géotechnique, 45 (1), 35–53. doi:10.1680/geot.1995.45.1.35
  • Xing, W. and Gang, W., 2014. Modeling swell-shrink behavior of compacted expansive clays subjected to cyclic drying and wetting. Chinese Journal of Geotechnical Engineering, 36 (8), 1423–1431.
  • Yong, R.N., 1999. Overview of modeling of clay microstructure and interactions for prediction of waste isolation barrier performance. Engg Geology, 54 (1–2), 83–91. doi:10.1016/S0013-7952(99)00064-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.