429
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Factors influencing undrained strength of fine-grained soils at high water contents

ORCID Icon, &
Pages 276-287 | Received 24 Jun 2017, Accepted 23 Feb 2018, Published online: 08 Mar 2018

References

  • Berilgen, S.A., Kilic, H.O., and Zaydin, K., 2007. Determination of undrained shear strength for dredged golden horn marine clay with laboratory tests. In: Proceedings of the Sri Lankan Geotechnical Society’s first international conference on soil & rock engineering, 5–11 August 2007, Colombo, Sri Lanka. Sri Lankan Geotechnical Society, 1–7.
  • Bolt, G.H., 1956. Physico-chemical analysis of the compressibility of pure clays. Géotechnique, 6 (2), 86–93. doi:10.1680/geot.1956.6.2.86
  • BS: 1377-Part 2, 1990. Methods of test for soil for engineering purposes: classification test. London: British Standards Institution.
  • Cabalar, A.F., 2011. The effects of fines on the behaviour of a sand mixture. Geotechnical and Geological Engineering, 29 (1), 91–100. doi:10.1007/s10706-010-9355-z
  • Das, N., et al., 2013. Comparison in undrained shear strength between low and high liquid limit soils. International Journal of Engineering Research and Technology, 2 (1), 1–6.
  • Dayal, U., Allen, J.H., and Jones, J.M., 1975. Use of an impact penetrometer for the evaluation of the in-situ strength of marine sediments. Marine Geotechnology, 1 (2), 73–89. doi:10.1080/10641197509388155
  • Dennehy, J.P., 1979. The remoulded undrained shear strength of cohesive soils and its influence on the stability of embankment fill. In: Clay Fills.Proceedings of the Conference held at the Institution of Civil Engineers, 14–15 November 1978. London: Institution of Civil Engineers, 87–94.
  • Edil, T.B. and Benson, C.H., 2009. Comparison of basic laboratory test results with more sophisticated laboratory and in-situ tests methods on soils in southeastern Wisconsin. Madison: Department of Civil and Environmental Engineering University of Wisconsin-Madison, Final report of Wisconsin highway research program, #0092-06-05, 11–12.
  • Federico, A., 1983. Relationships (Cu–w) and (Cu–s) for remoulded clayey soils at high water content. RivItal Geotechnology, 17 (1), 38–41.
  • Haigh, S.K., Vardanega, P.J., and Bolton, M.D., 2013. The plastic limit of clays. Géotechnique, 63, 435–440. doi:10.1680/geot.11.P.123
  • Hong, Z., et al., 2006. Comparison in undrained shear strength between undisturbed and remolded ariake clays. Journal Geotechnology Geoenvironment Engineering, 132 (2), 272–275. doi:10.1061/(ASCE)1090-0241(2006)132:2(272)
  • Houlsby, G.T., 1982. Theoretical analysis of the fall cone test. Gêotechnique, 32 (2), 111–118.
  • Houlsby, G.T., 1983. Discussion. Gêotechnique, 33 (4), 463.
  • IS: 2720-Part 40, 1977. Methods of test for soils: determination of free swell index of soils. New Delhi: Bureau of Indian Standards.
  • Kayabali, K. and Tufenkci, O.O., 2010. Shear strength of remolded soils at consistency limits. Canadian Geotechnical Journal, 47 (3), 259–266. doi:10.1139/T09-095
  • Kumar, G.V. and Wood, D.M., 1999. Fall cone and compression tests on clay±gravel mixtures. Géotechnique, 49 (6), 727–739. doi:10.1680/geot.1999.49.6.727
  • Lee, L.T., 2004. Predicting geotechnical parameters for dredged materials using the slump test method and index property correlations. Vicksburg, MS: U.S. Army Engineer Research and Development Center, DOER Technical Notes collection (ERDC TNDOER-D-1). Available from: http://www.wes.army.mil/el/dots/doer
  • Leroueil, S., Tavenas, F., and Le Bihan, J.P., 1983. Propriétés caractéristiques des argiles de l’est du Canada. Canadian Geotechnical Journal, 20 (4), 681–705. doi:10.1139/t83-076
  • Locat, J. and Demers, D., 1988. Viscosity, yield stress, remolded strength, and liquidity index relationships for sensitive clays. Canadian Geotechnical Journal, 25 (4), 799–806. doi:10.1139/t88-088
  • Lupini, J.F., Skinner, A.E., and Vaughan, P.R., 1981. The drained residual strength of cohesive soils. Géotechnique, 31 (2), 181–213. doi:10.1680/geot.1981.31.2.181
  • Micic, S., Shang, J.Q., and Lo, K.Y., 2001. Electrokinetic strengthening of marine clay adjacent to offshore foundations. In: Proc.11th Int. Offshore and Polar Eng. Conf, 17–22 June 2001, Stavanger, Norway. Cupertino, CA: International Society of Offshore and Polar Engineers, vol. 2, 694–701.
  • Mitchell, J.K. and Soga, K., 2005. Fundamentals of soil behavior. Hoboken, NJ: Wiley, 433–436.
  • Nagaraj, H.B., Sridharan, A., and Mallikarjuna, H.M., 2012. Re-examination of undrained strength at Atterberg limits water contents. Geotechnical and Geological Engineering, 30 (4), 727–736. doi:10.1007/s10706-011-9489-7
  • Norman, L.E.J., 1958. A comparison of values of liquid limit determined with apparatus having bases of different hardness. Géotechnique, 8 (2), 79–83. doi:10.1680/geot.1958.8.2.79
  • Polito, C.P. and Martin II, J.R., 2001. Effects of non-plastic fines on the liquefaction resistance of sands. Journal of Geotechnical and Geoenvironmental Engineering, 127 (5), 408–415. doi:10.1061/(ASCE)1090-0241(2001)127:5(408)
  • Prakash, K. and Sridharan, A., 2004. Free swell ratio and clay mineralogy of fine-grained soils. Geotech Testing Journal, 27 (2), 220–225.
  • Rahim, A.M., Vipulanandan, C., and Ayoub, A., 2013. Shear strength relationship for very soft clayey soils. In: Proc. CIGMAT-2013 Conf. Exhibition, 1 March 2013, Houston, TX. Department of Civil and Environmental Engineering, University of Houston, 1–2.
  • Romana, M. and Vásárhelyi, B., 2007. A discussion on the decrease of unconfined compressive strength between saturated and dry rock samples. In: Proc. 11th Congress of the ISRM, 9–13 July 1978, Lisbon, Portugal. International society for Rock Mechanics and Rock Engineering, vol. 1, 139–142.
  • Schofield, A.N. and Wroth, C.P., 1968. Critical state soil mechanics. London: McGraw Hill, 310.
  • Sharma, B. and Bora, P.K., 2003. Plastic limit, liquid limit and undrained shear strength of soil – reappraisal. Journal of Geotechnical and Geoenvironmental Engineering, 129 (8), 774–777. doi:10.1061/(ASCE)1090-0241(2003)129:8(774)
  • Sivapullaiah, P.V. and Sridharan, A., 1985. Liquid limit of soil mixtures. Geotech Testing Journal, 8 (3), 111–116. doi:10.1520/GTJ10521J
  • Skempton, A.W. and Northey, R.D., 1953. The sensitivity of clays. Gêotechnique, 3 (1), 30–53. doi:10.1680/geot.1952.3.1.30
  • Škopek, J. and Ter-Stepanian, G., 1975. Comparison of liquid limit values determined according to Casagrande and Vasilev. Géotechnique, 25 (1), 135–136. doi:10.1680/geot.1975.25.1.135
  • Sridharan, A. and Prakash, K., 1999. Mechanisms controlling the undrained shear strength behaviour of clays. Canada Geotechnology Journal, 36 (6), 1030–1038. doi:10.1139/t99-071
  • Sridharan, A., Rao, S.M., and Murthy, N.S., 1986. Liquid limit of montmorillonite soils. Geotech Testing Journal, 9 (3), 156–159. doi:10.1520/GTJ10623J
  • Sridharan, A., Rao, S.M., and Murthy, N.S., 1988. Liquid limit of kaolinitic soils. Géotechnique, 38 (2), 191–198. doi:10.1680/geot.1988.38.2.191
  • Sridharan, A. and Venkatappa Rao, G., 1979. Shear strength behaviour of saturated clays and the role of the effective stress concept. Géotechnique, 29 (2), 177–193. doi:10.1680/geot.1979.29.2.177
  • Stone, K. and Kyambadde, B.S., 2012. Index and strength properties of clay gravel mixtures. Proceedings ICE-Geotechnical Engineering, 165, 13–21. doi:10.1680/geng.2012.165.1.13
  • Thevanayagam, S. and Martin, G.R., 2002. Liquefaction in silty soils – screening and remediation issues. Soil Dynamics Earthquake Engineering, 22 (9–12), 1035–1042. doi:10.1016/S0267-7261(02)00128-8
  • Towner, G.D., 1973. An examination of the fall cone method for the determination of some strength properties of remoulded agricultural soils. Journal Soil Sciences, 24 (4), 470–479. doi:10.1111/j.1365-2389.1973.tb02314.x
  • Trauner, L., Dolinar, B., and Mišič, M., 2005. Relationship between the undrained shear strength, water content, and mineralogical properties of fine-grained soils. International Journal Geomech, 5 (4), 350–355. doi:10.1061/(ASCE)1532-3641(2005)5:4(350)
  • Wasti, Y. and Bezirci, M.H., 1986. Determination of the consistency limits of soils by the fall cone test. Canada Geotechnology Journal, 23 (2), 241–246. doi:10.1139/t86-033
  • Whyte, I.L., 1982. Soil plasticity and strength a new approach using extrusion. Ground Engineering, 15 (1), 16–24.
  • Widijaya, B., et al., 2015. Alternative way for determination of yields stress as rheology parameter for mudflow. International Journal of Civil and Structural Engineering, 2 (2),  4–7.
  • Wroth, C.P. and Wood, D.M., 1978. The correlation of index properties with some basic engineering properties of soils. Canada Geotechnology Journal, 15 (2), 137–145. doi:10.1139/t78-014
  • Youseff, M.S., El Ramli, A.H., and El Demery, M., 1965. Relationships between shear strength, consolidation, liquid limit, and plastic limit for remoulded clays. In: Proc. 6th Int. Conf. Soil Mech. and Fdn. Eng., 8–15 September 1965, Montreal. University of Toronto Press, vol. 1, 126–129.
  • Zreik, D.A., Germaine, J.T., and Ladd, C.C., 1997. Undrained strength of ultra-weak cohesive soils: relationship between water content and effective stress. Soils and Foundations, 37 (3), 117–128. doi:10.3208/sandf.37.3_117

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.