329
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Critical state behaviour of weakly bonded soil in drained state

, &
Pages 233-245 | Received 01 Feb 2017, Accepted 14 Mar 2018, Published online: 23 Mar 2018

References

  • Alarcon-Guzman, A., Leonards, G.A., and Chameau, J.L., 1988. Undrained monotonic and cyclic strength of sands. Journal of Geotechnical Engineering Society of Civil Engineering, 114 (10), 1089–1109. doi:10.1061/(ASCE)0733-9410(1988)114:10(1089)
  • Ali Rahman, Z., Toll, D.G., and Gallipoli, D., 2010. Micro-structure and engineering behaviour of weakly bonded soil. Sains Malaysiana, 39 (6), 989–997.
  • Asghari, E., Toll, D.G., and Haeri, S.M., 2003. Triaxial behaviour of a cemented gravelly sand, Tehran alluvium. Geotechnical and Geological Engineering, 21, 1–28. doi:10.1023/A:1022934624666
  • Atkinson, J.H., 1993. An introduction to the mechanics of soil and foundations. London: McGraw-Hill.
  • Atkinson, J.H. and Bransby, P.L., 1978. The mechanics of soils. London: McGraw-Hill.
  • Been, K. and Jefferies, M.G., 1985. A state parameter for sands. Geotechnique, 35 (2), 99–112. doi:10.1680/geot.1985.35.2.99
  • Been, K., Jefferies, M.G., and Hachey, J., 1991. The critical state of sands. Geotechnique, 41, 365–381. doi:10.1680/geot.1991.41.3.365
  • Bressani, L.A., 1990. Experimental properties of bonded soils. Thesis (PhD). University of London
  • Casagrande, A., 1936. Characteristics of cohesionless soils affecting the stability of earth fills. Journal Boston Social Civil Engineers, 23 (1), 13–32.
  • Casagrande, A., 1975. Liquefaction and cyclic deformation of sands: a critical review. Proceedings of the 5th Pan-American conference on soil mechanics and foundation engineering. Buenos Aires, Argentina
  • Castro, G., 1969. Liquefaction of sands. Thesis (PhD). Harvard University
  • Chu, J., 1995. An experimental examination of the critical state and other similar concepts for granular soils. Canadian Geotechnical Journal, 32, 1065–1075. doi:10.1139/t95-104
  • Coccovillo, T. and Coop, M.R., 1999. On the mechanics of structured sands. Geotechnique, 49 (6), 741–760. doi:10.1680/geot.1999.49.6.741
  • Cole, E.R.L., 1967. The behaviour of soils in the simple shear apparatus. Thesis (PhD). University of Cambridge, England
  • Consoli, N.C., et al., 2012. Influence of cement-voids ratio on stress-dilatancy behaviour of artificially cemented sand. Journal of Geotechnical and Geoenvironmetal Engineering, ASCE, 138 (1), 100–109. doi:10.1061/(ASCE)GT.1943-5606.0000565
  • Coop, M.R., et al., 2004. Particle breakage during shearing of a carbonate sand. Geotechnique, 54, 157–163. doi:10.1680/geot.2004.54.3.157
  • Coop, M.R. and Atkinson, J.H., 1993. The mechanics of cemented carbonate sands. Geotechnique, 43, 53–67. doi:10.1680/geot.1993.43.1.53
  • Cruz, N., Rodrigues, C., and Viana De Fonseea, A., 2011. The influence of cementation in the critical state behaviour of artificial bonded soils. International symposium on deformation characteristics of geomaterials. Seoul Korea, 730–737.
  • Fourie, A.B. and Papageorgiou, G., 2001. Defining an appropriate steady state line for Merriespruit gold tailings. Canadian Geotechnical Journal, 38, 695–706. doi:10.1139/t00-111
  • Haeri, M.S., et al., 2005. The behaviour of an artificially cemented sandy gravel. Geotechnical and Geological Engineering, 23, 537–560. doi:10.1007/s10706-004-5110-7
  • Hamidi, A. and Haeri, S.M., 2005. Critical state concepts for a cemented gravely sand. Electronic Journal of Geotechnical Engineering, 10, 1–12.
  • Hardin, B.O., 1987. 1-D strain in normally consolidated cohesionless soils. Journal of Geotechnical Engineering of American Society (ASCE), 113 (12), 1449–1467. doi:10.1061/(ASCE)0733-9410(1987)113:12(1449)
  • Horpibulsuk, S., et al., 2010. Behaviour of cemented clay simulated via the theoretical framework of the structured cam clay model. Computers and Geotechnics, 37 (1–2), 1–9. doi:10.1016/j.compgeo.2009.06.007
  • Hosseini, S.M., Haeri, M.S., and Toll, D.G., 2005. Behaviour of gravelly sand using critical state concept. Scientia Iranica, 12, 167–177.
  • Huang, T.J. and Airey, W.D.1991. The manufacture of cemented carbonate soils. Research Report R631, School of Civil and Mining Engineering University of Sydney
  • Huang, T.J. and Airey, W.D., 1993. Effects of cement and density on artificially cemented sand. Geotechnical Engineering of Hard Soil-soft Rocks Rotterdam Balkema, 1, 553–560.
  • Ishihara, K., Tatsuoka, F., and Yasuda, S., 1975. Undrained deformation and liquefaction of sand under cyclic stresses. Soils and Foundations, 15, 29–44. doi:10.3208/sandf1972.15.29
  • Kamruzzaman, A.H., Chew, S.H., and Lee, F.H., 2009. Structuration and destructuration behavior of cement-treated Singapore marine clay. Journal Geotechnical and Geoenvironmental Engineering, 4 (573), 573–589. doi:10.1061/(ASCE)1090-0241(2009)135
  • Kasama, K., Ochiai, H., and Yasufuku, N., 2000. On the stress-strain behaviour of lightly cemented clay based on an extended critical state concept. Soils and Foundations, 40 (5), 37–47. doi:10.3208/sandf.40.5_37
  • Konrad, J.-M., 1990. Minimum undrained strength versus steady-state strength of sands. Journal of Geotechnical Engineering ASCE, 116 (6), 948–963. doi:10.1061/(ASCE)0733-9410(1990)116:6(948)
  • Lade, P.V. and L.B. Ibsen, 1997. A study of the phase transformation and the characteristic lines of sand behavior. International symposium on development and progressive failure in geomechanics. Nagoya, Japan.
  • Lade, P.V. and Overton, D.D., 1989. Cementation effects in frictional materials. Journal of Geotechnical Engineering, 115 (10), 1373–1387. doi:10.1061/(ASCE)0733-9410(1989)115:10(1373)
  • Lade, P.V. and Yamamuro, J.A., 1997. Effects of non-plastic fines on static liquefaction of sands. Canadian Geotechnical Journal, 34, 918–928. doi:10.1139/t97-052
  • Lee, C.J., 1995. Static shear and liquefaction potential of sand. Proc. of 3rd International Conference on recent advances in Geotechnical Earthquake Engineering and Soil Dynamics, 2–7 April. St Louis, MO, Vol. 1, 115–118.
  • Lee, I. and Coop, M.R., 1995. The intrinsic behaviour of a decomposed granite soil. Geotechnique, 45, 117–130. doi:10.1680/geot.1995.45.1.117
  • Leroueil, S. and Vaughan, P.R., 1990. The general and congruent effects of structure in natural soils and weak rocks. Geotechnique, 40, 467–488. doi:10.1680/geot.1990.40.3.467
  • Luzzani, L. and Coop, M.R., 2002. On the relationship between particle breakage and the critical state of sands. Soils and Foundations, 42, 71–82. doi:10.3208/sandf.42.2_71
  • Maccarini, M., 1987. Laboratory studies of a weakly bonded artificial soil. Thesis (PhD). University of London
  • Malandraki, V., 1994. The engineering behaviour of a weakly bonded artificial soil. Thesis (PhD). University of Durham
  • Malandraki, V. and Toll, D.G., 2000. Drained probing triaxial test on a weakly bonded artificial soil. Geotechnique, 50 (2), 141–151. doi:10.1680/geot.2000.50.2.141
  • Marri, A., Wanastowski, D., and Hai-Sui, Y., 2012. Dilatancy characteristics of cemented sand at a relatively high stresses. Proceedings of 3rd International Conference on Construction in Development Countries. Bangkok Thailand
  • Mooney, M.A., Finno, R.J., and Viggiani, M.G., 1998. A unique critical state for sands? Journal of Geotechnical Engineering ASCE, 124, 1100–1108. doi:10.1061/(ASCE)1090-0241(1998)124:11(1100)
  • Nguyen, L., Fatahi, B., and Khabbaz, H., 2017. Development of a constitutive model to predict the behavior of cement-treated clay during cementation degradation: c3 model. International Journal of Geomechanics ASCE, 17 (7), 04017010. doi:10.1061/(ASCE)GM.1943-5622.0000863
  • Nova, R. and Wood, D.M., 1979. A constitutive model for sand in triaxial compression. International Journal for Numerical and Analytical Methods in Geomechanics, 3, 255–1052. doi:10.1002/nag.1610030305
  • Poulos, S., 1981. The steady state of deformation. Journal Geotechnical Engineering Division ASCE, 107 (5), 553–561.
  • Poulos, S.J., Castro, G., and France, W., 1985. Liquefaction evaluation procedure. Journal of Geotechnical Engineering, ASCE, 111, 772–792.
  • Riemer, M.F., and Seed, R.B., 1997. Factor affecting apparent position of steady-state line. Journal of Geotechnical and Geoenvironmental Engineering, 123 (3), 281–288.
  • Roscoe, K.H., Schofield, A.N., and Wroth, C.P., 1958. On the yielding of soils. Geotechnique, 8, 22–53. doi:10.1680/geot.1958.8.1.22
  • Santamaria, J.C. and Cho, G.C., 2001. Determination of critical state parameters in sandy soils: simple procedure. Geotechnical Testing Journal, 24 (2), 185–192. doi:10.1520/GTJ11338J
  • Schnaid, F., Prietto, P.D.M., and Consoli, N.C., 2001. Characterization of cemented sand in triaxial compression. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 127 (10), 857–867. doi:10.1061/(ASCE)1090-0241(2001)127:10(857)
  • Schofield, A.N. and Wroth, C.P., 1968. Critical state soil mechanics. London: McGraw-Hill.
  • Seed, H.B. and Lee, K.L., 1967. Undrained strength characteristics of cohesionless soils. Journal of Soil Mechanics and Foundation Division, ASCE, 93, 333–360.
  • Sladen, J.A., D’Hollander, R.D., and Krahn, J., 1985. The liquefaction of sands, a collapse surface approach. Canadian Geotechnical Journal, 22, 564–578. doi:10.1139/t85-076
  • Stroud, M.A., 1971. The behaviour of sand at low stress levels in the simple shear apparatus. Thesis (PhD). University of Cambridge, England.
  • Suebsuk, J., Horpibulsuk, S., and Liu, M.D., 2010. Modified structured cam clay: a generalized critical state model for destructured, naturally and artificially structured clays. Computers and Geotechnics, 37, 956–968. doi:10.1016/j.compgeo.2010.08.002
  • Toll, D.G. and Ali Rahman, Z., 2017. Critical state shear strength of an unsaturated artificially cemented sand. Géotechnique, 67 (3), 208–215. doi:10.1680/jgeot.15.P.042
  • Uddin, K., Balasubramaniam, A.S., and Bergado, D.T., 1997. Engineering behaviour of cemented-treated Bangkok soft clay. Geotechnical Engineering, 28, 89–119.
  • Vaughan, P.R. and Kwan, C.W., 1984. Weathering, structure and in situ stress in residual soils. Geotechnique, 34 (1), 43–59. doi:10.1680/geot.1984.34.1.43
  • Vaughan, P.R., Maccarini, M., and Mokhtar, S.M., 1988. Indexing the engineering properties of residul soil. Quarterly Journal of Engineering Geology and Hydrogeology, 21, 69–84. doi:10.1144/GSL.QJEG.1988.021.01.05
  • Vesic, A.C. and Clough, G.W., 1968. Behaviour of granular materials under high stresses. Journal of Soil Mechanics Foundation Division, ASCE, 94 (SM3), 661–688.
  • Wang, Y.-H. and Leung, S.-C., 2008. A particulate-scale investigation of cemented sand behaviour. Canadian Geotechnical Journal, 45 (1), 29–44. doi:10.1139/T07-070
  • Wood, D.M., 1990. Soil behaviour and critical state soil mechanics. Cambridge: Cambridge University Press.
  • Yamamuro, J.A. and Lade, P.V., 1998. Steady-state concepts and static liquefaction of silty sands. Journal of Geotechnical and Geoenvironmental Engineering, 124, 868–877. doi:10.1061/(ASCE)1090-0241(1998)124:9(868)
  • Yu, F.W., 2017. Stress-dilatancy behaviour of sand incorporating particle breakage. Acta Geotechnica, 14 (1), 55–61.
  • Zlatovic, S. and Ishihara, K., 1997. Normalized behaviour of very loose non-plastic soils: effects of fabric. Soils and Foundations, 37, 47–56. doi:10.3208/sandf.37.4_47

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.