181
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Revisiting the CPT-based characterizations of a highway subgrade

ORCID Icon &
Pages 167-177 | Received 25 Jan 2018, Accepted 01 Feb 2019, Published online: 01 Mar 2019

References

  • Achintya, H. and Tang, W.H., 1979. Uncertainty analysis of relative density. Journal of Geotechnical Engineering Division ASCE, 105 (GT7), 899–904.
  • Ahmed, S.M. 2016. Enhancing the CPT correlation with small strain shear stiffness of sands. Ain Shams Engineering Journal. (Article in press). doi:10.1016/j.asej.2016.08.010.
  • Andrus, R.D., et al., 2007. Predicting shear-wave velocity from cone penetration resistance. In: 4th International conference on Earthquake Geotechnical Engineering, Thessaloniki, Greece, Paper No. 1454.
  • Briaud, J.L., and Tucker, L.M., 1988. Measured and predicted axial response of 98 piles. Journal of Geotechnical Engineering, 114 (9), 984–1001. doi: 10.1061/(ASCE)0733-9410(1988)114:9(984)
  • Burmister, D.M., 1948. The importance and practical use of the relative density in soil mechanics. ASTM Proceeding, 48, 1249–1268.
  • Cetin, K.O. and Isik, N.S., 2007. Probabilistic assessment of stress normalization for CPT data. Journal of Geotechnical and Geoenvironmental Engineering, 133 (7), 887–897. doi:10.1061/(ASCE)1090-0241(2007)133:7(887).
  • Eslaamizaad, S. and Robertson, P.K., 1997. Evaluation of settlement of footings on sand from seismic in-situ tests. In: Proceedings of the 50th Canadian geotechnical conference, Ottawa, Ontario, 2, 755–764.
  • Eslami, A., and Fellenius, B. H., 1997. Pile capacity by direct CPT and CPTu methods applied to 102 case histories. Canadian Geotechnical Journal, 34 (6), 886–904. doi: 10.1139/t97-056
  • Goto, S., et al., 1992. Mechanical properties of undisturbed tone – river gravel obtained by in-situ freezing method. Soils and Foundations, 32 (3), 15–25. doi:10.3208/sandf1972.32.3_15.
  • Hardin, B.O. and Drnevich, V.P., 1972. Shear modulus and damping in soils: design equations and curves. Journal of the Soil Mechanics and Foundations Division, ASCE, 98 (SM7), 667–691.
  • Hatanaka, M., et al., 1988. Cyclic undrained shear properties of high quality undisturbed Tokyo gravel. Soils and Foundations, 28 (4), 57–68. doi:10.3208/sandf1972.28.4_57.
  • Hegazy, Y.A. and Mayne, P.W., 2006. A global statistical correlation between shear wave velocity and cone penetration data. Site Geomaterial Charact, GeoShanghai, ASCE GSP, 149, 243–248.
  • ISSMFE., 1977. International society for soil mechanics and foundation engineering, Report of the Subcommittee on penetration testing in Europe. In: Proceedings, 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, 3(5).
  • Jefferies, M.G. and Davies, M.P., 1993. Use of CPTU to estimate equivalent SPT N60. Geotechnical Testing Journal, 16 (4), 458–468. doi:10.1520/GTJ10286J.
  • Kodicherla, S.P.K. and Nandyala, D.K., 2016. Use of CPT – DCP based correlations in characterization of subgrade of a highway in southern Ethiopia region. International Journal of Geoengineering, 7 (11), 1–15.
  • Lancellotta, R., 1983. Analisi di Affidabilità in Ingegneria Geotecnica, Atti dell’Istituto di Scienza delle Costruzioni, No 625, Politecnico di Torino.
  • Lunne, T., Robertson, P.K., and Powell, J.J.M., 1997. Cone penetration testing in geotechnical practice. London: Blackie Academic, E & FN Spon, Routledge Publishers, 352.
  • Mayne, P.W., 2006. Undisturbed sand strength from seismic cone tests. Geomechanics and Geoengineering, 1 (14), 239–257. doi:10.1080/17486020601035657.
  • Mayne, P.W., 2007. Cone penetration testing State-of-Practice, NCHRP Synthesis, Transportation Research Board Report Project, 20–25.
  • Mayne, P.W., 2014. Interpretation of geotechnical parameters from seismic piezocone tests. In: 3rd international symposium on cone penetration testing, CPT’14 Las Vegas. 47–73.
  • McGann, C., Bradley, B.A., and Jeong, S., 2018. Empirical correlation for estimating shear-wave velocity from cone penetration test data for banks Peninsula loess soils in Canterbury, New Zealand. Journal of Geotechnical and Geoenvironmental Engineering, 144 (9), 04018054. doi:10.1061/(ASCE)GT.1943-5606.0001926.
  • McGann, C.R., et al., 2014. Development and evaluation of CPT-Vs correlation for Canterbury, New Zealand soils of the shallow Christchurch and Springston formations Research Report 2014-01. Civil and Natural Resources Engineering, University of Canterbury;
  • Moss, R.E.S., Seed, R.B., and Olsen, R.S., 2006. Normalizing the CPT for overburden stress. Journal of Geotechnical and Geoenvironmental Engineering, 132 (3), 378–387. doi:10.1061/(ASCE)1090-0241(2006)132:3(378).
  • Olsen, R.S. and Mitchell, J.K., 1995. CPT stress normalization and prediction of soil classification. In: proceedings of the International Symposium on Cone Penetration Testing. 4-5 October 1995. Vol. 2, Linkoping, Sweden: Swedish Geotechnical Society,
  • Piratheepan, P., 2002. Estimating shear-wave velocity from SPT and CPT data. M.S. Thesis, Clemson University. doi:10.1044/1059-0889(2002/er01)
  • Rix, G.J. and Stokes, K.H., 1992. Correlation of initial tangent modulus and cone resistance, In: Proceedings international symposium on calibration chamber testing, Postdam, NY.
  • Robertson, P.K., 1990. Soil penetration using the cone penetration test. Canadian Geotechnical Journal, 27 (1). doi:10.1139/t90-014
  • Robertson, P.K., 2009. Interpretation of cone penetration tests – a unified approach. Canadian Geotechnical Journal, 46, 1–19. doi:10.1139/T09-065
  • Robertson, P.K. and Cabal, K.L., 2014. Guide to cone penetration testing for geotechnical engineering. 6th ed. Signal Hill, California: Gregg Drilling & Testing, Inc.
  • Robertson, P.K. and Campanella, R.G., 1983a. Interpretation of cone penetration tests, Part I: sand. Canadian Geotechnical Journal, 20 (4), 718–733. doi:10.1139/t83-078.
  • Robertson, P.K. and Campanella, R.G., 1983b. Interpretation of cone penetration tests, Part II: clay. Canadian Geotechnical Journal, 20 (4), 734–745. doi:10.1139/t83-079.
  • Robertson, P.K. and Wride, C.E., 1998. Evaluating cyclic liquefaction potential using the cone penetration test. Canadian Geotechnical Journal, 35 (3), 442–459. doi:10.1139/t98-017.
  • Salgado, R., Bandini, P., and Karim, A., 2000. Shear strength and stiffness of silty sand. Journal of Geotechnical and Geoenvironmental Engineering, 126 (5), 451–462. doi:10.1061/(ASCE)1090-0241(2000)126:5(451).
  • Schmertmann, J.H., 1976. An updated correlation between relative density dr and fugro – type electric cone bearing, qc, Contract Report DACW 39-76 M 6646 WES, Vicksburg, Miss.
  • Schmertmann, J.H., 1978. Guidelines for cone penetration test: performance and design, Report FHWA-TS-78-209, Washington, D.C.
  • Tanaka, H. and Tanaka, M., 1998. Characterization of sandy soils using CPT & DMT. Soils AND Foundations, 38 (3), 55–65. doi:10.3208/sandf.38.3_55.
  • Tavenas, F. and La Rochelle, P., 1972. Accuracy of relative density measurements. Geotechnique, 22 (4), 549–562. doi:10.1680/geot.1972.22.4.549.
  • Tavenas, F.A., 1972. Difficulties in the use of relative density asa soil parameters, ASTM, STP 523, Selig and Ladd Editors, 478–483.
  • Tonni, L., et al., 2010. Classification, overconsolidation and stiffness of venice lagoon soils from CPTU. In: P.K. Robertson and P.W. Mayne, eds. Proceedings of 2nd International Symposium on Cone Penetration Testing (CPT’10), Vol. 2. Madison, WI: Omnipress.
  • Wichtmann, T., Navarrete Herna´ Ndez, M.A., and Triantafyllidis, T., 2015. On the influence of a non-cohesive fines content on small strain stiffness, modulus degradation and damping of quartz sand. Soil Dynamics and Earthquake Engineering, 69 (2), 103–114. doi:10.1016/j.soildyn.2014.10.017.
  • Yoshimi, Y., 2000. A Forzen sample that dis not Melt. In: Proceedings of Conference on Development in Geotechnical Engineering. Bangkok: GEOTECH-YEAR, 293–296.
  • Yoshimi, Y., Hatanaka, M., and Oh-Oka, H., 1978. Undisturbed sampling of saturated sands by freezing. Soils and Foundations, 18 (3), 59–73. doi:10.3208/sandf1972.18.3_59.
  • Zhang, M. and Tong, L., 2017. New statistical and graphical assessment of CPT-based empirical correlations for the shear wave velocity of soils. Engineering Geology, 226, 184–191. (Article in press). doi:10.1016/j.enggeo.2017.06.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.