184
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Modelling the response of chemically degraded carbonate sands

& ORCID Icon
Pages 245-261 | Received 10 Oct 2018, Accepted 08 Feb 2019, Published online: 25 Mar 2019

References

  • Airey, D.W., 1993. Triaxial testing of naturally cemented carbonate soil. Journal of Geotechnical Engineering, 119 (9), 1379–1398. doi:10.1061/(ASCE)0733-9410(1993)119:9(1379)
  • Arroyo, M., Castellanzaii, R., and Novani, R., 2005. Compaction bands and oedometric testing in cemented soils. Soils and Foundations, 45 (2), 181–194. doi:10.3208/sandf.45.2_181
  • ASTM, 2006. ASTM D4254-14: standard test methods for minimum index density and unit weight of soils and calculation of relative density. ASTM Standards, I (Reapproved 2006), 9.
  • Bandani, V. and Coop, M.R., 2011. The influence of particle breakage on the location of the critical state line of sands. Soils and Foundations, 51 (4), 591–600. doi:10.3208/sandf.51.591
  • Bareither, C.A., Benson, C.H., and Edil, T.B., 2012. Effects of waste composition and decomposition on the shear strength of municipal solid waste. Journal of Geotechnical and Geoenvironmental Engineering, 138 (10), 1161–1174. doi:10.1061/(ASCE)GT.1943-5606.0000702
  • Bauer, E., 2009. Hypoplastic modelling of moisture-sensitive weathered rockfill materials. Acta Geotechnica, 4 (4), 261–272. doi:10.1007/s11440-009-0099-y
  • Bolton, M.D., 1986. The strength and dilatancy of sands. Géotechnique, 36 (1), 65–78. doi:10.1680/geot.1986.36.1.65
  • Buscarnera, G., 2012. A conceptual model for the chemo-mechanical degradation of granular geomaterials. Géotechnique Letters, 2 (3), 149–154. doi:10.1680/geolett.12.00020
  • Buscarnera, G. and Das, A., 2016. Chemo-mechanics of cemented granular solids subjected to precipitation and dissolution of mineral species. International Journal for Numerical and Analytical Methods in Geomechanics, 40 (9), 1295–1320. doi:10.1002/nag.v40.9
  • Castellanza, R., 2002. Weathering effects on the mechanical behaviour of bonded geomaterials : an experimental, theoretical and numerical study. Milan University of Technology (Politecnico).
  • Castellanza, R. and Nova, R., 2004. Oedometric tests on artificially weathered carbonatic soft rocks. Journal of Geotechnical and Geoenvironmental Engineering, 130 (7), 728–739. doi:10.1061/(ASCE)1090-0241(2004)130:7(728)
  • Chang, C.S., Kabir, M.G., and Chang, Y., 1993. Micromechanics modeling for stress-strain behavior of granular soils. II: evaluation. Journal of Geotechnical Engineering, 118 (12), 1975–1992. doi:10.1061/(ASCE)0733-9410(1992)118:12(1975)
  • Chen, G., Gallipoli, D., and Ledesma, A., 2007. Chemo-hydro-mechanical coupled consolidation for a poroelastic clay buffer in a radioactive waste repository. Transport in Porous Media, 69 (2), 189–213. doi:10.1007/s11242-006-9083-2
  • Cherif Taiba, A., et al., 2018. Experimental investigation into the influence of roundness and sphericity on the undrained shear response of silty sand soils. Geotechnical Testing Journal, 41 (3), 20170118. doi:10.1520/GTJ1805-EB
  • Ciantia, M.O. and Hueckel, T., 2013. Weathering of submerged stressed calcarenites: chemo-mechanical coupling mechanisms. Géotechnique, 63 (9), 768–785. doi:10.1680/geot.SIP13.P.024
  • Coop, M.R., et al., 2004. Particle breakage during shearing of a carbonate sand. Géotechnique, 54 (3), 157–163. doi:10.1680/geot.2004.54.3.157
  • Cornforth, D., 1973. Prediction of drained strength of sands from relative density measurements. Evaluation of Relative Density and Its Role in Geotechnical Projects Involving Cohesionless Soils, 281–281–23.
  • Daouadji, A. and Hicher, P.Y., 2010. An enhanced constitutive model for crushable granular materials. International Journal for Numerical and Analytical Methods in Geomechanics, 34 (6), 555–580.
  • Datta, M., Gulhati, S., and Rao, G., 1982. Engineering behavior of carbonate soils of India and some observations on classification of such soils. In: Demars, K. and Chaney, R., eds., Geotechnical Properties, Behavior, and Performance of Calcareous Soils, STP777-EB. West Conshohocken, PA: ASTM International, 113–140.
  • De Gennaro, V., et al., 2004. On the collapse behaviour of oil reservoir chalk. Géotechnique, 54 (6), 415–420. doi:10.1680/geot.2004.54.6.415
  • Doherty, J.P. and Muir Wood, D., 2013. An extended Mohr–Coulomb (EMC) model for predicting the settlement of shallow foundations on sand. Géotechnique, 63 (8), 661–673. doi:10.1680/geot.12.P.008
  • Doherty, P., Spagnoli, G., and Bellato, D., 2016. Mixed-in-place response of two carbonate sands. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 149 (2), 153–163. doi:10.1680/jgeen.15.00058
  • Einav, I., 2007. Breakage mechanics—part I: theory. Journal of the Mechanics and Physics of Solids, 55 (6), 1274–1297. doi:10.1016/j.jmps.2006.11.003
  • Einav, I. and Puzrin, A.M., 2004. Pressure-dependent elasticity and energy conservation in elastoplastic models for soils. Journal of Geotechnical and Geoenvironmental Engineering, 130 (1), 81–92. doi:10.1061/(ASCE)1090-0241(2004)130:1(81)
  • Fernandez-Merodo, J.A., et al., 2007. Coupling transport of chemical species and damage of bonded geomaterials. Computers and Geotechnics, 34 (4), 200–215. doi:10.1016/j.compgeo.2007.02.008
  • Giretti, D., et al., 2017. Mechanical properties of a carbonate sand from a dredged hydraulic fill. Géotechnique, 68 (5), 410–420. doi:10.1680/jgeen.15.00058
  • Hu, L.B. and Hueckel, T., 2007. Coupled chemo-mechanics of intergranular contact: toward a three-scale model. Computers and Geotechnics, 34 (4), 306–327. doi:10.1016/j.compgeo.2007.02.009
  • Hyde, A.F.L. and Yasufuku, N., 1995. Pile end-bearing capacity in crushable sands. Géotechnique, 45 (4), 663–676. doi:10.1680/geot.1995.45.4.663
  • Kong, D. and Fonseca, J., 2018. Quantification of the morphology of shelly carbonate sands using 3D images. Géotechnique, 68 (3), 249–261. doi:10.1680/jgeot.16.P.278
  • Lashkari, A., 2009. On the modeling of the state dependency of granular soils. Computers and Geotechnics, 36 (7), 1237–1245. doi:10.1016/j.compgeo.2009.06.003
  • Manzari, M.T. and Dafalias, Y.F., 1997. A critical state two-surface plasticity model for sands. Géotechnique, 47 (2), 255–272. doi:10.1680/geot.1997.47.2.255
  • McDougall, J., Kelly, D., and Barreto, D., 2013. Particle loss and volume change on dissolution: experimental results and analysis of particle size and amount effects. Acta Geotechnica, 8 (6), 619–627. doi:10.1007/s11440-013-0212-0
  • Miao, G. and Airey, D.W., 2013. Breakage and ultimate states for a carbonate sand. Géotechnique, 63 (14), 1221–1229. doi:10.1680/geot.12.P.111
  • Muir Wood, D., 2004. Geotechnical modelling. Abingdon, UK: Taylor & Francis.
  • Muir Wood, D. and Maeda, K., 2008. Changing grading of soil: effect on critical states. Acta Geotechnica, 3 (1), 3–14. doi:10.1007/s11440-007-0041-0
  • Navarro, V., et al., 2012. A synthetic model of cracking in Santos Morcillo Lake, central Spain. Computers and Geotechnics, 40, 1–13. doi:10.1016/j.compgeo.2011.10.001
  • Nguyen, G.D. and Einav, I., 2009. The energetics of cataclasis based on breakage mechanics. Pure and Applied Geophysics, 166 (10–11), 1693–1724. doi:10.1007/s00024-009-0518-x
  • Parise, M. and Lollino, P., 2011. A preliminary analysis of failure mechanisms in karst and man-made underground caves in Southern Italy. Geomorphology, 134 (1–2), 132–143. doi:10.1016/j.geomorph.2011.06.008
  • Pestana, J.M. and Whittle, A.J., 1995. Compression model for cohesionless soils. Géotechnique, 45 (4), 611–631. doi:10.1680/geot.1995.45.4.611
  • Shin, H. and Santamarina, J.C., 2009. Mineral dissolution and the evolution of k0. Journal of Geotechnical and Geoenvironmental Engineering, 135 (8), 1141–1147. doi:10.1061/(ASCE)GT.1943-5606.0000053
  • Tengattini, A., Das, A., and Einav, I., 2016. A constitutive modelling framework predicting critical state in sand undergoing crushing and dilation. Géotechnique, 66 (9), 695–710. doi:10.1680/jgeot.14.P.164
  • Viswanath, P. and Das, A., 2017. Effects of particle dissolution on the constitutive response of granular materials. In: Vandamme et al., eds., Poromechanics VI. Reston, VA: American Society of Civil Engineers, 732–739.
  • Wang, Z.-L., et al., 2002. State pressure index for modeling sand behavior. Journal of Geotechnical and Geoenvironmental Engineering, 128 (6), 511–519. doi:10.1061/(ASCE)1090-0241(2002)128:6(511)
  • Wawersik, W.R., et al., 2001. Terrestrial sequestration of CO2: an assessment of research needs. Advances in Geophysics, 2000, 97–IX.
  • Wichtmann, T. and Triantafyllidis, T., 2016. An experimental database for the development, calibration and verification of constitutive models for sand with focus to cyclic loading: part I—tests with monotonic loading and stress cycles. Acta Geotechnica, 11 (4), 739–761. doi:10.1007/s11440-015-0402-z
  • Youd, T., 1973. Factors controlling maximum and minimum densities of sands. ASTM international.
  • Yu, F., 2017. Particle breakage and the drained shear behavior of sands. International Journal of Geomechanics, 17 (8), 04017041. doi:10.1061/(ASCE)GM.1943-5622.0000919
  • Zheng, J. and Hryciw, R.D., 2016. Index void ratios of sands from their intrinsic properties. Journal of Geotechnical and Geoenvironmental Engineering, 142 (12), 06016019. doi:10.1061/(ASCE)GT.1943-5606.0001575

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.