159
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Investigation of the interaction of the construction of building S1 on underlying Thameslink

, ORCID Icon &
Pages 20-43 | Received 12 Dec 2018, Accepted 10 Jul 2019, Published online: 05 Aug 2019

References

  • BAŞ, H.G., 2000. The accuracy of using theodolite in close-range engineering measurements, International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B5. Amsterdam 2000.
  • Bedingfield, J., 2018, Canal Tunnels S1 Baseline Monitoring Report (Spring 2018), Ramboll.
  • Casey, B., 2014. The consolidation and strength behaviour of mechanically compress fine-ground sediments. PhD Thesis. Massachusetts Institute of Technology.
  • ÇELİK, S., 2017. Comparison of mohr-coulomb and hardening soil models’ numerical estimation of ground surface settlement caused by tunneling. Igdir Üni. Fen Bilimleri Enst. Der./Igdir University Journal of Institute Science and Technology, 7 (4), 95–102.
  • Chang, C.T., et al., 2001. Response of a Taipei Rapid Transit System (TRTS) tunnel to adjacent excavation. Tunnelling and Underground Space Technology, 16 (3), 151–158. doi:10.1016/S0886-7798(01)00049-9
  • Cheng, C.Y., et al., 2007. Finite element analysis of tunnel–soil–pile interaction using displacement-controlled model. Tunnelling and Underground Space Technology, 22 (4), 450–466. doi:10.1016/j.tust.2006.08.002
  • Chodorowski, A. and Hope, V., 2008. Piling adjacent to metro tunnels at St pancras, Foundations: Proceeding of the Second BGA International Conference of Foundation, ch.82, 987
  • Dixon, N. and Bromhead, E. N., 1999. Depth-dependant permeability on london clay measured using standpipe piezometer equilibration data. Geotechnique, 49 (5), 651–660. doi:10.1680/geot.1999.49.5.651
  • Ellison, R.A., et al., 2004. Geology of London. Memoir of the British Geological Survey. Sheets 256 (North London), 257 (Romford), 270 (South London) and 271 (Dartford) (England and Wales).
  • Franzius, J.N., Potts, D.M., and Burland, J.B., 2005. The influence of soil anisotropy and K 0 on ground surface movements resulting from tunnel excavation. Géotechnique, 55 (3), 189–199. doi:10.1680/geot.2005.55.3.189
  • Gakis, D., Nasekhian, A., and Flynn, S., 2014. Back analysis of observed measurements for optimised SCL Tunnel design– crossrail learning legacy. ICE Publishing. https://learninglegacy.crossrail.co.uk/documents/back-analysis-of-observed-measurements-for-optimised-scl-tunnel-design/
  • Gasparre, A., et al., 2007. The stiffness of natural London Clay. Géotechnique, 57 (1), 33–47. doi:10.1680/geot.2007.57.1.33
  • Hight, D.W., et al., 2007. Characteristics of the London Clay from the Terminal 5 site at Heathrow Airport. Géotechnique, 57 (1), 3–18. doi:10.1680/geot.2007.57.1.3
  • Hu, Z.F., et al., 2003. Design and construction of a deep excavation in soft soils adjacent to the Shanghai Metro tunnels. Canadian Geotechnical Journal, 40 (5), 933–948. doi:10.1139/t03-041
  • Jurecic, N., Zdravkovic, L., and Jovicic, V., 2013. Predicting ground movements in London Clay. Proceeding of the Institution of Civil engineers, Geotechnical Engineering V. 166 I. GE5.
  • Lawler, M.L., Farrell, E.R., and Lochaden, A.L., 2010. Comparison of the measured and finite element–predicted ground deformations of a stiff lodgement till. Canadian Geotechnical Journal, 48 (1), 98–116. doi:10.1139/T10-038
  • Lienhart, W., 2017. Geotechnical monitoring using total stations and laser scanners: critical aspects and solutions. Journal of Civil Structural Health Monitoring, 7 (3), 315–324. doi:10.1007/s13349-017-0228-5
  • Paraskevopoulou, C. 2016. Time-dependency of rock and implications associated with tunnelling, PhD Thesis. Canada: Queen’s University Publications.
  • Paraskevopoulou, C., et al., 2018. Time-dependent behaviour of brittle rocks based on static load laboratory testing. Journal of Geotechnical and Geological Engineering, 36, 337. doi:10.1007/s10706-017-0331-8
  • Paraskevopoulou, C. and Diederichs, M., 2018. Analysis of time-dependent deformation in tunnels using the convergence-confinement method. Tunnelling and Underground Space Technology, 17, 62–80. doi:10.1016/j.tust.2017.07.001
  • Paraskevopoulou, C. and Perras, M.A., 2017. Investigating the long-term behaviour of brittle rocks: visco-elastic creep parameters and time-to-failure. In: PRF 2017: Progressive Failure and Long-term Strength Degradation of Brittle Rocks ISRM Conference, June 2017, Ascona, Switzerland.
  • PLAXIS, 2018a, Scientific Manual, s.1.: Plaxis.
  • PLAXIS, 2018b, Material models manual, s.1.: Plaxis.
  • Ramboll, 2017, King’s cross central building S1 Form B: certificate of design and checking, Report ref: KXC-S1-33235-G-FormB.
  • Royse, K.R., et al., 2012. Geology of London, UK. Proceedings of the Geologists’ Association, 123 (1), 22–45. doi:10.1016/j.pgeola.2011.07.005
  • Rutledge, H. and Harrison, S., 2015, Digging for monitoring gold: in-tunnel monitoring during the crossrail Paddington station box excavation – crossrail learning legacy, ICE Publishing.
  • Salim, N.M. and Lafta, S.J., 2017. The impact of driving and loading piles on existing tunnel. Imperial Journal of Interdisciplinary Research, 3 (7),  262–270.
  • Sandström, M., 2016. Numerical modelling and sensitivity analysis of tunnel deformation in London Clay. Examensarbete Jord- Och Bergmekanik, 16 ISSN 1652-599X, 09.
  • Schroeder, F.C., Potts, D.M., and Addenbrooke, T.I., 2004. The influence of pile group loading on existing tunnels. Géotechnique, 54 (6), 351–362. doi:10.1680/geot.2004.54.6.351
  • Sharma, J.S., et al., 2001. Effect of large excavation on deformation of adjacent MRT tunnels. Tunnelling and Underground Space Technology, 16 (2), 93–98. doi:10.1016/S0886-7798(01)00033-5
  • Shi, J., Ng, C.W.W., and Chen, Y., 2015. Three-dimensional numerical parametric study of the influence of basement excavation on existing tunnel. Computers and Geotechnics, 63, 146–158. doi:10.1016/j.compgeo.2014.09.002
  • Wang, F., et al., 2013. Impact of overhead excavation on an existing shield tunnel: field monitoring and a full 3D finite element analysis. Computation Material Contin, 34, 63–81.
  • Wang, W.D., et al., 2017. Determination of parameters for hardening soil small strain model of Shanghai clay and its application in deep excavations. In Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering.
  • Yao, J., Taylor, R.N., and McNamara, A.M., 2008. The effects of loaded bored piles on existing tunnels. In Proc., 6th Int. Symp. on Geotechnical Aspects of Underground Construction in Soft Ground, pp. 735-741.
  • Yeow, H.C. and Coop, M.R., 2017. The constitutive modelling of London Clay. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 170 (1), 3–15.
  • Zhang, J.F., et al., 2013. Prediction of tunnel displacement induced by adjacent excavation in soft soil. Tunneling and Underground Space Technology, 36, 24–33. doi:10.1016/j.tust.2013.01.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.