191
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A theoretical strain relationship for identifying the failure of laboratory-scale rocks under triaxial compression

, , ORCID Icon & ORCID Icon
Pages 99-115 | Received 25 Mar 2019, Accepted 12 Jul 2019, Published online: 05 Aug 2019

References

  • Andersson,J.C. and Martin,C.D., 2009. The Äspö pillar stability experiment: part I—experiment design. International Journal of Rock Mechanics and Mining Sciences, 46 (5), 865–878. doi:10.1016/j.ijrmms.2009.02.010
  • Bieniawski,Z.T., 1967. Mechanism of brittle fracture of rock, part I—theory of the fracture process. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 4 (4), 395–406. doi:10.1016/0148-9062(67)90030-7
  • Bieniawski,Z.T. and Bernede,M.J., 1979. Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16 (2), 137–140. doi:10.1016/0148-9062(79)91450-5
  • Borri-Brunetto,M., Carpinteri,A., and Chiaia,B., 2004. The effect of scale and criticality in rock slope stability. Rock Mechanics and Rock Engineering, 37 (2), 117–126. doi:10.1007/s00603-003-0004-1
  • Brace,W.F., 1964. Brittle fracture of rocks. In: Proceedings of the international conference on the state of stress in the Earth’s crust, Santa Monica, Calif.
  • Bruning,T., etal., 2018. Experimental study on the damage evolution of brittle rock under triaxial confinement with full circumferential strain control. Rock Mechanics and Rock Engineering, 51 (11), 3321–3341. doi:10.1007/s00603-018-1537-7
  • Cai,M., etal., 2004. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations. International Journal of Rock Mechanics and Mining Sciences, 41 (5), 833–847. doi:10.1016/j.ijrmms.2004.02.001
  • Camones,L.A.M., etal., 2013. Application of the discrete element method for modeling of rock crack propagation and coalescence in the step-path failure mechanism. Engineering Geology, 153, 80–94. doi:10.1016/j.enggeo.2012.11.013
  • Carpinteri,A., Chiaia,B., and Invernizzi,S., 2002. Applications of fractal geometry and renormalization group to the Italian seismic activity. Chaos, Solitons & Fractals, 14 (6), 917–928. doi:10.1016/S0960-0779(02)00081-4
  • Chen,Y., etal., 2016. New reinforcement algorithms in discontinuous deformation analysis for rock failure. Geomechanics and Engineering, 11 (6), 787–803. doi:10.12989/gae.2016.11.6.787
  • Chen, Z.H., et al., 2006. Confinement effects for damage and failure of brittle rocks. International Journal of Rock Mechanics and Mining Sciences, 43(8), 1262–1269. doi:10.1016/j.ijrmms.2006.03.015
  • Cook,N.G.W., 1970. An experiment proving that dilatancy is apervasive volumetric property of brittle rock loaded to failure. Rock Mechanics, 2 (4), 181–188. doi:10.1007/BF01245573
  • Cornelius,R.R. and Scott,P.A., 1993. Amaterials failure relation of accelerating creep as empirical description of damage accumulation. Rock Mechanics and Rock Engineering, 26 (3), 233–252. doi:10.1007/BF01040117
  • Dai,F., etal., 2015. Numerical investigation of the progressive fracture mechanisms of four ISRM-suggested specimens for determining the mode Ifracture toughness of rocks. Computers and Geotechnics, 69, 424–441. doi:10.1016/j.compgeo.2015.06.011
  • Diederichs,M.S., 2007. The 2003 Canadian Geotechnical Colloquium: mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunnelling. Canadian Geotechnical Journal, 44 (9), 1082–1116. doi:10.1139/T07-033
  • Diederichs,M.S., Kaiser,P.K., and Eberhardt,E., 2004. Damage initiation and propagation in hard rock during tunneling and the influence of near-face stress rotation. International Journal of Rock Mechanics and Mining Sciences, 41, 785–812. doi:10.1016/j.ijrmms.2004.02.003
  • Eberhardt,E., etal., 1997. Changes in acoustic event properties with progressive fracture damage. International Journal of Rock Mechanics and Mining Sciences, 34 (3–4), 71–e1. doi:10.1016/S1365-1609(97)00062-2
  • Eberhardt,E., Stimpson,B., and Stead,D., 1999. Effects of grain size on the initiation and propagation thresholds of stress-induced brittle fractures. Rock Mechanics and Rock Engineering, 32 (2), 81–99. doi:10.1007/s006030050026
  • Fan,L.F., Ren,F., and Ma,G.W., 2012. Experimental study on viscoelastic behavior of sedimentary rock under dynamic loading. Rock Mechanics and Rock Engineering, 45 (3), 433–438. doi:10.1007/s00603-011-0197-7
  • Hatzor,Y.H. and Palchik,V., 1997. The influence of grain size and porosity on crack initiation stress and critical flaw length in dolomites. International Journal of Rock Mechanics and Mining Sciences, 34 (5), 805–816. doi:10.1016/S1365-1609(96)00066-6
  • Heap,M.J., etal., 2011. Brittle creep in basalt and its application to time-dependent volcano deformation. Earth and Planetary Science Letters, 307 (1), 71–82. doi:10.1016/j.epsl.2011.04.035
  • Hoek,E. and Bieniawski,Z.T., 1965. Brittle fracture propagation in rock under compression. Journal of Fracture Mechanics, 1, 137–155.
  • Huang,F., etal., 2019. An empirical UCS model for anisotropic blocky rock masses. Rock Mechanics and Rock Engineering, 1–13. doi:10.1007/s00603-019-01771-2
  • Hudson,J.A. and Fairhurst,C., 1969. Tensile strength, Weibull’s theory and ageneral statistical approach to rock failure. In: Proceedings of the Civil Engineering Materials Conference, April. Southampton.
  • Lajtai,E.Z. and Lajtai,V.N., 1974. The evolution of brittle fracture in rocks. Journal of Geological Society of London, 130 (1), 1–16. doi:10.1144/gsjgs.130.1.0001
  • Liang, X., et al., 2019. A semi-analytical method for the dynamic analysis of cylindrical shells with arbitrary boundaries. Ocean Engineering, 178, 145–155. doi:10.1016/j.oceaneng.2019.02.074
  • Liu, G., et al., 2019. Identification of nonlinearity using transfer entropy combined with surrogate data algorithm. Journal of Engineering Mechanics, 145 (2), 4018138. doi:10.1061/(ASCE)EM.1943-7889.0001566
  • Martin,C.D., 1997. Seventeenth Canadian geotechnical colloquium: the effect of cohesion loss and stress path on brittle rock strength. Canadian Geotechnical Journal, 34 (5), 698–725. doi:10.1139/t97-030
  • Martin,C.D. and Chandler,N.A., 1994. The progressive fracture of Lac du Bonnet granite. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 31 (6), 643–659. doi:10.1016/0148-9062(94)90005-1
  • Miura,K., Okui,Y., and Horii,H., 2003. Micromechanics-based prediction of creep failure of hard rock for long-term safety of high-level radioactive waste disposal system. Mechanics of Materials, 35 (3–6), 587–601. doi:10.1016/S0167-6636(02)00286-7
  • Munday,J.G.L. and Dhir,R.K., 1981. Long-term strength of concrete under sustained load. In: Proc. 2nd Australian Conference on Engineering Materials, July. Sydney, Australia.
  • Nicksiar,M. and Martin,C.D., 2013. Crack initiation stress in low porosity crystalline and sedimentary rocks. Engineering Geology, 154, 64–76. doi:10.1016/j.enggeo.2012.12.007
  • Okui,Y. and Horii,H., 1997. Stress and time dependent failure of brittle rocks under compression: Atheoretical prediction. Journal of Geophysical Research: Solid Earth, 102 (B7), 14869–14881. doi:10.1029/97JB00476
  • Pan,X.H., Xiong,Q.Q., and Wu,Z.J., 2018. New method for obtaining the homogeneity indexmof Weibull distribution using peak and crack damage strains. International Journal of Geomechanics, 18 (6), 04018034. doi:10.1061/(ASCE)GM.1943-5622.0001146
  • Pestman,B.J. and Van Munster,J.G., 1996. An acoustic emission study of damage development and stress-memory effects in sandstone. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 33 (6), 585–593. doi:10.1016/0148-9062(96)00011-3
  • Qin,S.Q., etal., 2006. Instability leading to coal bumps and nonlinear evolutionary mechanisms for a coal-pillar-and-roof system. International Journal of Solids and Structures, 43 (25–26), 7407–7423. doi:10.1016/j.ijsolstr.2005.06.087
  • Qin,S.Q. and Pan,X.H., 2011. Stress and strain instability criteria for crustal rocks under shear condition. Chinese Journal of Geophysics, 54 (7), 1767–1771. (in Chinese).
  • Qin,S.Q., Wang,Y.Y., and Ma,P., 2010. Exponential laws of critical displacement evolution for landslide avalanches. Chinese Journal of Rock Mechanics and Engineering, 29 (5), 873–880.
  • Rüsch,H., 1960. Research towards ageneral flexural theory for structural concrete. Proceedings of American Concrete Institute, 57, 1–28.
  • Saleur,H., Sammis,C.G., and Sornette,D., 1996. Renormalization group theory of earthquakes. Nonlinear Processes in Geophysics, 3 (2), 102–109. doi:10.5194/npg-3-102-1996
  • Sarfarazi,V., Haeri,H., and Shemirani,A.B., 2017. The effect of compression load and rock bridge geometry on the shear mechanism of weak plane. Geomechanics and Engineering, 13 (3), 431–446.
  • Scholz,C.H., 1968. Microfracturing and the inelastic deformation of rock in compression. Journal of Geophysical Research, 73 (4), 1417–1432. doi:10.1029/JB073i004p01417
  • Shen,J. and Karakus,M., 2013. Three-dimensional numerical analysis for rock slope stability using shear strength reduction method. Canadian Geotechnical Journal, 51 (2), 164–172. doi:10.1139/cgj-2013-0191
  • Smalley,R.F., Turcotte,D.L., and Solla,S.A., 1985. Arenormalization group approach to the stick-slip behavior of faults. Journal of Geophysical Research: Solid Earth, 90 (B2), 1894–1900. doi:10.1029/JB090iB02p01894
  • Stacey,T.R., 1981. Asimple extension strain criterion for fracture of brittle rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 18, 469–474. doi:10.1016/0148-9062(81)90511-8
  • Tang,C.A., etal., 2000. Numerical studies of the influence of microstructure on rock failure in uniaxial compression—part I: effect of heterogeneity. International Journal of Rock Mechanics and Mining Sciences, 37 (4), 555–569. doi:10.1016/S1365-1609(99)00121-5
  • Todinov,M.T., 2009. Is Weibull distribution the correct model for predicting probability of failure initiated by non-interacting flaws? International Journal of Solids and Structures, 46 (3), 887–901. doi:10.1016/j.ijsolstr.2008.09.033
  • Vásárhelyi,B. and Bobet,A., 2000. Modeling of crack initiation, propagation and coalescence in uniaxial compression. Rock Mechanics and Rock Engineering, 33 (2), 119–139. doi:10.1007/s006030050038
  • Wang,M., etal., 2016. Astudy on the brittleness and progressive failure process of anisotropic shale. Environmental Earth Sciences, 75 (10), 886. doi:10.1007/s12665-016-5700-8
  • Weibull,W., 1951. Astatistical distribution function of wide applicability. Journal of Applied Mechanics, 9, 293–297.
  • Wilson,K.G., 1979. Problems in physics with many scales of length. Science, 241, 158–179.
  • Wong,T.F., etal., 2006. Microcrack statistics, Weibull distribution and micromechanical modeling of compressive failure in rock. Mechanics of Materials : an International Journal, 38 (7), 664–681. doi:10.1016/j.mechmat.2005.12.002
  • Wu,Z. and Wong,L.N.Y., 2013. Modeling cracking behavior of specimens containing inclusions using the numerical manifold method. Engineering Geology, 162, 1–13. doi:10.1016/j.enggeo.2013.05.001
  • Xue,L., etal., 2014a. New quantitative displacement criteria for slope deformation process: from the onset of the accelerating creep to brittle rupture and final failure. Engineering Geology, 182, 79–87. doi:10.1016/j.enggeo.2014.08.007
  • Xue,L., etal., 2014b. Astudy on crack damage stress thresholds of different rock types based on uniaxial compression tests. Rock Mechanics and Rock Engineering, 47 (4), 1183–1195. doi:10.1007/s00603-013-0479-3
  • Xue,L., etal., 2015. Apotential strain indicator for brittle failure prediction of low-porosity rock: part II—theoretical studies based on renormalization group theory. Rock Mechanics and Rock Engineering, 48 (5), 1773–1785. doi:10.1007/s00603-014-0681-y
  • Yu,Y., etal., 2019. Robust design of siphon drainage method for stabilizing rainfall-induced landslides. Engineering Geology, 249, 186–197. doi:10.1016/j.enggeo.2019.01.001
  • Zhou,J., etal., 2019. Novel grain-based model for simulation of brittle failure of Alxa porphyritic granite. Engineering Geology, 251, 100–114. doi:10.1016/j.enggeo.2019.02.005
  • Zhou,X.P., 2004. Analysis of the localization of deformation and the complete stress–strain relation for mesoscopic heterogeneous brittle rock under dynamic uniaxial tensile loading. International Journal of Solids and Structures, 41 (5), 1725–1738. doi:10.1016/j.ijsolstr.2003.07.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.