223
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of the effects of blast-induced damage zone with attenuating disturbance factor on the ground support interaction

ORCID Icon, ORCID Icon & ORCID Icon
Pages 277-287 | Received 18 May 2019, Accepted 30 Aug 2019, Published online: 19 Sep 2019

References

  • Bastante, F.G., Alejano, L., and Gonzalez-Cao, J., 2012. Predicting the extent of blast-induced damage in rock masses. International Journal of Rock Mechanics and Mining Sciences, 56, 44–53. doi:10.1016/j.ijrmms.2012.07.023
  • Brown, E.T., et al., 1983. Ground response curves for rock tunnels. Journal of Geotechnical Engineering, 109, 15–39. doi:10.1061/(ASCE)0733-9410(1983)109:1(15)
  • Carranza-Torres, C. and Fairhurst, C., 2000. Application of the convergence-confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion. Tunnelling and Underground Space Technology, 15, 187–213. doi:10.1016/S0886-7798(00)00046-8
  • Daemen, J.J.K., 2011. Nuclear waste disposal in underground mined space, promises – problems/challenges- solution. Journal of Engineering Geology, (India) 37 (1–4), 37–63.
  • Emsley, S., et al. (1997). ZEDEX - A study of damage and disturbance from tunnel excavation by blasting and tunnel boring. Swedish nuclear fuel and waste management company, Technical Report, 97-30.
  • González-Cao, J., et al., 2018. Convergence-confinement curve analysis of excavation stress and strain resulting from blast-induced damage. Tunnelling and Underground Space Technology, 73, 162–169. doi:10.1016/j.tust.2017.12.005
  • Hedayat, A. (2016). Stability of circular tunnels excavated in rock masses under gravity loading. ARMA-2016-647, 50th U.S. Rock Mechanics/Geomechanics Symposium, 26–29 June, Houston, Texas.
  • Hedayat, A., Weems, J., and Roshan, H. (2018). Stress and deformation analysis of circular tunnels with consideration of blast-induced damage and gravity. ARMA 18–253, 52nd Rock mechanics/geomechanics symposium, 17–20 June, Seattle, Washington.
  • Hoek, E. and Karzulovic, A., 2000. Rock mass properties for surface mines. Slope stability in surface mining. In: W.A. Hustralid, M.K. McCarter, and D.J.A. van Zyl, eds. Society for mining, metallurgical and exploration (SME). Littleton, Colorado: Society for Mining, Metallurgical and Exploration (SME), 59–70.
  • Hoek, E., 2007. Practical rock engineering. https://www.rocscience.com/assets/resources/learning/hoek/Practical-Rock-Engineering-Full-Text.pdf
  • Hoek, E. and Brown, E.T., 1980. Underground excavations in rock. In: 1st Institution of mining and metallurgy. London: CRC Press, 527.
  • Hoek, E. and Brown, E.T., 2018. The Hoek–brown failure criterion and GSI – 2018 edition. Journal of Rock Mechanics and Geotechnical Engineering. doi:10.1016/j.jrmge.2018.08.001
  • Hoek, E., Carranza-Torres, C., and Corkum, B., 2002. Hoek-Brown failure criterion - 2002 edition. Proc. NARMS-TAC Conference, Toronto, 1, pp. 267–273
  • Hoek, E. and Diederichs, M.S., 2006. Empirical estimation of rock mass modulus. International Journal of Rock Mechanics and Mining Sciences, 43 (2), 203–2015. doi:10.1016/j.ijrmms.2005.06.005
  • Hudson, J.A., et al., 2009. Characterising and modelling the excavation damaged zone in crystalline rock in the context of radioactive waste disposal. Environmental Geology, 57, 1275–1297. doi:10.1007/s00254-008-1554-z
  • Kwon, S., et al., 2009. An investigation of the excavation damaged zone at the KAERI underground research tunnel. Tunnelling and Underground Space Technology, 24, 1–13. doi:10.1016/j.tust.2008.01.004
  • Mandal, S.K., et al., 2005. Causes of overbreak and influence of blast parameters for smooth undamaged wall. In: Proc. Intl. Sym. On Advances in Mining Technology and Management, November 30–December 2, IIT, Kharagpur, pp. 49–58.
  • Mandal, S.K. and Singh, M.M., 2009. Evaluating extent and causes of overbreak in tunnels. Tunnelling and Underground Space Technology, 24, 22–36. doi:10.1016/j.tust.2008.01.007
  • Marinos, P. and Hoek, E., 2000 . GSI: a geologically friendly tool for rock mass strength estimation. Proc. GeoEng 2000 Conference, Melbourne, pp. 1422–1442.
  • Martino, J.B. and Chandler, N.A., 2004. Excavation-induced damage studies at the underground research laboratory. International Journal of Rock Mechanics and Mining Sciences, 41, 1413–1426. doi:10.1016/j.ijrmms.2004.09.010
  • Olsson, M. and Ouchterlony, F., 2003. New formula for blast induced damage in the remaining rock, SveBeFo Report No. 65, Swedish Rock Engineering Research, Stockholm.
  • Oreste, P., 2009. The convergence-confinement method: roles and limits in modern geomechanical tunnel design. American Journal of Applied Sciences, 6 (4), 757–771. doi:10.3844/ajassp.2009.757.771
  • Oreste, P., 2014. A numerical approach for evaluating the convergence-confinement curve of a rock tunnel considering Hoek-Brown strength criterion. American Journal of Applied Sciences, 11 (12), 2021–2030. doi:10.3844/ajassp.2014.2021.2030
  • Oreste, P.P., 2007. A numerical approach to the hyperstatic reaction method for the dimensioning of tunnel supports. Tunnelling and Underground Space Technology, 22, 185–205. doi:10.1016/j.tust.2006.05.002
  • Palmström, A. and Singh, R., 2001. The deformation modulus of rock masses – comparisons between in situ tests and indirect estimates. Tunnelling and Underground Space Technology, 16 (3), 115–131. doi:10.1016/S0886-7798(01)00038-4
  • Panet, M., 1995. Le calcul des tunnels par la methode convergence-confinement. Paris: Presses de l’ecole nationale des Ponts et chaussees.
  • Peila, D. and Oreste, P.P., 1995. Axisymmetric analysis of ground reinforcing in tunnelling design. Computers and Geotechnics, 17, 253–274. doi:10.1016/0266-352X(95)93871-F
  • Read, R.S., 1996. Characterizing excavation damage in highly-stressed granite at AECL’s underground research laboratory. In: Proceedings of the excavation disturbed zone workshop. Canadian nuclear society international conference on deep geological disposal of radioactive waste, Winnipeg, Canada: Canadian Nuclear Society, 35–46.
  • Rechsteiner, G.F. and Lombardi, G., 1974. Une methode de Calculelasto-Plastique de L’etat de tension et de deformation Autourd’unecavitesouterraine. In: Advances in rock mechanics: proceedings of the 3rd congress of the international society for rock mechanics, ISBN-10: 0309022460, Washington: National Academy of Sciences, 1049–1054.
  • Saiang, D. and Nordlund, E., 2009. Numerical analyses of the influence of blast-induced rock around shallow tunnels in brittle rock. Rock Mechanics and Rock Engineering, 42, 421–448. doi:10.1007/s00603-008-0013-1
  • Scoble, M.J., et al., 1997. Measurement of blast. Minerals Engineering Journal, 49 (6), 103–108.
  • Spagnoli, G., Oreste, P., and Lo Bianco, L., 2016. New equations for estimating radial loads on deep shaft linings in weak rocks. International Journal of Geomechanics, 16 (6), 06016006. doi:10.1061/(ASCE)GM.1943-5622.0000657
  • Spagnoli, G., Oreste, P., and Lo Bianco, L., 2017. Estimation of shaft radial displacement beyond the excavation bottom before installation of permanent lining in nondilatant weak rocks with a novel formulation. International Journal of Geomechanics, 17 (9), 04017051. doi:10.1061/(ASCE)GM.1943-5622.0000949
  • Torbica, Z. and Lapčević, V., 2015. Estimating extent and properties of blast-damaged zone around underground excavations. Rem: Revista Escola De Minas, 68 (4), 441–453.
  • Verna, H.K., et al., 2014. Blast induced damage to surrounding rock mass in an underground excavation. Journal of Geological Resource and Engineering, 2, 13–19.
  • Verna, H.K., et al., 2018. Blast induced rock mass damage around tunnels. Tunnelling and Underground Space Technology, 71, 149–158. doi:10.1016/j.tust.2017.08.019
  • Walton, G., et al., 28 Sep 2015. Non-invasive detection of fractures, fracture zones, and rock damage in a hard rock excavation – experience from the Äspö hard rock laboratory in Sweden. Engineering Geology, 196, 210–221. doi:10.1016/j.enggeo.2015.07.010
  • Zhang, Y., et al., 2017. A method to identify blasting-induced damage zones in rock masses based on the P-wave rise time. Geotechnical Testing Journal, 41 (1), 31–42. doi:10.1520/GTJ1801-EB

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.