411
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Numerical investigation of stability of deep excavations supported by soil-nailing method

, ORCID Icon, &
Pages 434-451 | Received 04 Jan 2019, Accepted 11 Oct 2019, Published online: 14 Nov 2019

References

  • Annan, J. and Zhiwu, W., 2011. Optimizing supporting parameters of metro tunnel based on improved particle swarm optimization arithmetic. Procedia Engineering, 15, 4857–4861. Available from: http://www.sciencedirect.com/science/article/pii/S1877705811024076
  • Briaud, J.-L. and Lim, Y., 1997. Soil-nailed wall under piled bridge abutment: simulation and guidelines. Journal of Geotechnical and Geoenvironmental Engineering, 123 (11), 1043–1050. doi:10.1061/(ASCE)1090-0241(1997)123:11(1043)
  • Bryson, L.S. and Zapata-Medina, D.G., 2011. Method for estimating system stiffness for excavation support walls. Journal of Geotechnical and Geoenvironmental Engineering, 138 (9), 1104–1115. doi:10.1061/(ASCE)GT.1943-5606.0000683
  • Burlon, S., Mroueh, H., and Shahrour, I., 2013. Influence of diaphragm wall installation on the numerical analysis of deep excavation. International Journal for Numerical and Analytical Methods in Geomechanics, 37 (11), 1670–1684. doi:10.1002/nag.v37.11
  • Clough, G.W. and O’rourke, T.D., 1990. Construction induced movements of insitu wallsed. In: Design and performance of earth retaining structures. ASCE, 439–470.
  • Do, T.-N., Ou, C.-Y., and Chen, R.-P., 2016. A study of failure mechanisms of deep excavations in soft clay using the finite element method. Computers and Geotechnics, 73, 153–163. doi:10.1016/j.compgeo.2015.12.009
  • Dong, Y., et al., 2014. Advanced finite element analysis of a complex deep excavation case history in shanghai. Frontiers of Structural and Civil Engineering, 8 (1), 93–100. doi:10.1007/s11709-014-0232-3
  • Finno, R.J. and Calvello, M., 2005. Supported excavations: observational method and inverse modeling. Journal of Geotechnical and Geoenvironmental Engineering, 131 (7), 826–836. doi:10.1061/(ASCE)1090-0241(2005)131:7(826)
  • Goh, A., et al., 2017. A simple estimation model for 3d braced excavation wall deflection. Computers and Geotechnics, 83, 106–113. doi:10.1016/j.compgeo.2016.10.022
  • Guo, H., Song, E., and Chen, Z., 2010. Calculation of horizontal displacement of soil nailing considering construction process. Chinese Journal of Geotechnical Engineering, 32 (S1), 69–73.
  • Halabian, A.M., Sheikhbahaei, A.M., and Hashemolhosseini, S.H., 2012. Three dimensional finite difference analysis of soil-nailed walls under static conditions. Geomechanics and Geoengineering, 7 (3), 183–196. doi:10.1080/17486025.2012.661468
  • Hashash, Y.M., et al., 2010. Comparison of two inverse analysis techniques for learning deep excavation response. Computers and Geotechnics, 37 (3), 323–333. doi:10.1016/j.compgeo.2009.11.005
  • Hashash, Y.M., Song, H., and Osouli, A., 2011. Three-dimensional inverse analyses of a deep excavation in chicago clays. International Journal for Numerical and Analytical Methods in Geomechanics, 35 (9), 1059–1075. doi:10.1002/nag.949
  • Hashash, Y.M. and Whittle, A.J., 1996. Ground movement prediction for deep excavations in soft clay. Journal of Geotechnical Engineering, 122 (6), 474–486. doi:10.1061/(ASCE)0733-9410(1996)122:6(474)
  • Hsieh, P.-G. and Ou, C.-Y., 1998. Shape of ground surface settlement profiles caused by excavation. Canadian Geotechnical Journal, 35 (6), 1004–1017. doi:10.1139/t98-056
  • Hsieh, P.-G., Ou, C.-Y., and Liu, H.-T., 2008. Basal heave analysis of excavations with consideration of anisotropic undrained strength of clay. Canadian Geotechnical Journal, 45 (6), 788–799. doi:10.1139/T08-006
  • Hsiung, B.-C.B., 2009. A case study on the behaviour of a deep excavation in sand. Computers and Geotechnics, 36 (4), 665–675. doi:10.1016/j.compgeo.2008.10.003
  • Hsiung, B.-C.B., et al., 2018. Evaluation of the wall deflections of a deep excavation in central jakarta using three-dimensional modeling. Tunnelling and Underground Space Technology, 72, 84–96. Available from: http://www.sciencedirect.com/science/article/pii/S0886779816306356
  • Jan, J., et al., 2002. Neural network forecast model in deep excavation. Journal of Computing in Civil Engineering, 16 (1), 59–65. doi:10.1061/(ASCE)0887-3801(2002)16:1(59)
  • Kempfert, H.-G. and Gebreselassie, B., 2006. Excavations and foundations in soft soils. Berlin, Germany: Springer Science & Business Media.
  • Khoiri, M. and Ou, C.-Y., 2013. Evaluation of deformation parameter for deep excavation in sand through case histories. Computers and Geotechnics, 47, 57–67. doi:10.1016/j.compgeo.2012.06.009
  • Kim, S. and Finno, R.J., 2019. Inverse analysis of a supported excavation in Chicago. Journal of Geotechnical and Geoenvironmental Engineering, 145 (9), 04019050. doi:10.1061/(ASCE)GT.1943-5606.0002120
  • Kung, G.T., et al., 2007a. A neural network approach to estimating deflection of diaphragm walls caused by excavation in clays. Computers and Geotechnics, 34 (5), 385–396. doi:10.1016/j.compgeo.2007.05.007
  • Kung, G.T., et al., 2007b. Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays. Journal of Geotechnical and Geoenvironmental Engineering, 133 (6), 731–747. doi:10.1061/(ASCE)1090-0241(2007)133:6(731)
  • Lajevardi, S.H., Azadimanesh, S., and Moezi, A., 2018. Numerical study of deep excavations stability with nailing method: representation of help design tables and diagrams. Amirkabir Journal of Civil Engineering, 50 (1), 53–54.
  • Lambert, K.A., 2009. Fundamentals of python: from first programs through data structures. Boston, MA: Cengage Learning.
  • Lazarte, C.A., et al., 2015. Geotechnical engineering circular No. 7 soil nail walls-reference manual. National Highway Institute (US)., (No. FHWA-NHI-14-007).
  • Likitlersuang, S., et al., 2013. Finite element analysis of a deep excavation: A case study from the bangkok mrt. Soils and Foundations, 53 (5), 756–773. doi:10.1016/j.sandf.2013.08.013
  • Maleki, M.R. and Mahyar, M., 2012. Effect of nail characteristics on slope stability based on limit equilibrium and numerical methods. Geomechanics and Geoengineering, 7 (3), 197–207. doi:10.1080/17486025.2011.631037
  • Osman, A.S. and Bolton, M.D., 2006. Ground movement predictions for braced excavations in undrained clay. Journal of Geotechnical and Geoenvironmental Engineering, 132 (4), 465–477.
  • Plaxis 2d, 2015. plaxis user manual, Delft university of technology & plaxis bv, The netherlands.
  • Plumelle, C. and Schlosser, F., 1990. A french national research project on soil nailing: clouterre. Performance of reinforced soil structure. ICE Publishing, British Geotechnical Society.
  • Qi, X.-H. and Zhou, W.-H., 2017. An efficient probabilistic back-analysis method for braced excavations using wall deflection data at multiple points. Computers and Geotechnics, 85, 186–198. doi:10.1016/j.compgeo.2016.12.032
  • Rechea, C., Levasseur, S., and Finno, R., 2008. Inverse analysis techniques for parameter identification in simulation of excavation support systems. Computers and Geotechnics, 35 (3), 331–345. doi:10.1016/j.compgeo.2007.08.008
  • Shakeel, M. and Ng, C.W.W., 2017. Settlement and load transfer mechanism of a pile group adjacent to a deep excavation in soft clay. Computers and Geotechnics, Available from: http://www.sciencedirect.com/science/article/pii/S0266352X17302835.
  • Shi, J., et al., 2015. Interaction between a large-scale triangular excavation and adjacent structures in shanghai soft clay. Tunnelling and Underground Space Technology, 50, 282–295. doi:10.1016/j.tust.2015.07.013
  • Singh, V.P. and Babu, G.S., 2010. 2d numerical simulations of soil nail walls. Geotechnical and Geological Engineering, 28 (4), 299–309. doi:10.1007/s10706-009-9292-x
  • Sluis, J., 2012. Validation of embedded pile row in plaxis 2d. MSc thesis. Delft: Delft University of Technology.
  • Wang, H., et al., 2016. Failure mechanism of soil nail—prestressed anchor composite retaining structure. Geotechnical and Geological Engineering, 34 (6), 1889–1898. doi:10.1007/s10706-016-9998-5
  • Wang, L., et al., 2014. Probabilistic inverse analysis of excavation-induced wall and ground responses for assessing damage potential of adjacent buildings. Geotechnical and Geological Engineering, 32 (2), 273–285. doi:10.1007/s10706-013-9709-4
  • Whittle, A.J., Hashash, Y.M., and Whitman, R.V., 1993. Analysis of deep excavation in boston. Journal of Geotechnical Engineering, 119 (1), 69–90. doi:10.1061/(ASCE)0733-9410(1993)119:1(69)
  • Yin, Z.-Y., et al., 2011. Modeling time-dependent behavior of soft sensitive clay. Journal of Geotechnical and Geoenvironmental Engineering, 137 (11), 1103–1113. doi:10.1061/(ASCE)GT.1943-5606.0000527
  • Zhang, W., Goh, A.T., and Xuan, F., 2015. A simple prediction model for wall deflection caused by braced excavation in clays. Computers and Geotechnics, 63, 67–72. doi:10.1016/j.compgeo.2014.09.001
  • Zhang, W., et al., 2018. Influence of groundwater drawdown on excavation responses – a case history in bukit timah granitic residual soils. Journal of Rock Mechanics and Geotechnical Engineering, 10, 856–864. Available from: http://www.sciencedirect.com/science/article/pii/S1674775517305127
  • Zhao, B., et al., 2015. Inverse analysis of deep excavation using differential evolution algorithm. International Journal for Numerical and Analytical Methods in Geomechanics, 39 (2), 115–134. doi:10.1002/nag.v39.2
  • Zhou, Y., Cheuk, C., and Tham, L., 2009. Numerical modelling of soil nails in loose fill slope under surcharge loading. Computers and Geotechnics, 36 (5), 837–850. doi:10.1016/j.compgeo.2009.01.010
  • Zolqadr, E., Yasrobi, S.S., and Norouz Olyaei, M., 2016. Analysis of soil nail walls performance-Case study. Geomechanics and Geoengineering, 11 (1), 1–12. doi:10.1080/17486025.2015.1006263

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.