521
Views
4
CrossRef citations to date
0
Altmetric
Review

Recent advances and past discoveries on tapered pile foundations: a review

ORCID Icon &
Pages 455-484 | Received 17 Oct 2019, Accepted 06 Jul 2020, Published online: 20 Jul 2020

References

  • American Petroleum Institute, A.R.P.f.P. 1984. Designing and constructing fixed off-shore platforms. Washington, DC: API.
  • Bakholdin, B. (1971). Bearing capacity of pyramidal piles. Paper presented at the Proceedings of the 4th conference on soil mechanics and foundation engineering, Budapest.
  • Bhushan, K. and Askari, S., 1984. Lateral-load tests on drilled pier foundations for solar plant heliostats. In: J. Langer, E. Mosley, and C. Thompson, ed. Laterally loaded deep foundations: analysis and performance. West Conshohocken, PA: ASTM International, 140–156. doi:https://doi.org/10.1520/STP36818S
  • Bhushan, K. and Haley, S. (1980). Development of computer program using PY data from load test results for lateral load design of drilled piers. Woodward-Clyde Consultants Professional Development Committee, San Francisco, Calif, 1183.
  • Bhushan, K., Lee, L.J., and Grime, D.B. 1981, October. Lateral load tests on drilled piers in sand. In: Drilled Piers and Caissons. St. Louis, Missouri, United States: ASCE, 114–131.
  • Bolin, H., 1941. The pile efficiency formula of the Uniform Building Code. Building Standards Monthly, 10 (1), 4–5.
  • Bowles, L.E., 1996. Foundation analysis and design. 5th ed. New York: The McGraw-Hill Companies, Inc.
  • Brinkgreve, R., Swolfs, W., and Engine, E., 2002. Plaxis users manual. Rotterdam (The Neetherlands): Balkema.
  • Bryden, C., Arjomandi, K., and Valsangkar, A., 2018a. Dynamic axial stiffness and damping parameters of tapered piles. International Journal of Geomechanics, 18 (7), 06018014. doi:https://doi.org/10.1061/(ASCE)GM.1943-5622.0001185
  • Bryden, C., Arjomandi, K., and Valsangkar, A. (2018b). Effect of material damping on the dynamic axial response of pile foundations. Paper presented at the Proc., 6th Int. Structural Specialty Conf. Fredericton, NB, Canada: Canadian Society for Civil Engineers.
  • Bryden, C., Arjomandi, K., and Valsangkar, A., 2020. Dynamic Axial Response of Tapered Piles Including Material Damping. Practice Periodical on Structural Design and Construction, 25 (2), 04020001. doi:https://doi.org/10.1061/(ASCE)SC.1943-5576.0000467
  • Budhu, M. and Davies, T.G., 1987. Nonlinear analysis of laterality loaded piles in cohesionless soils. Canadian Geotechnical Journal, 24 (2), 289–296. doi:https://doi.org/10.1139/t87-034
  • CANADIAN GEOTECHNICAL SOCIETY, 1992. Canadian foundation engineering manual. Richmond, B.C. Canada: Canadian Geotechnical Society.
  • Chellis, R.D., 1969. Pile foundations. 2nd. New York, N.Y: McGraw-Hill, Inc.
  • Committee, A.D.F., 1984. Practical guidelines for the selection, design and installation of piles. USA, ASCE Deep Foundation Committee, 5, 7.
  • D’Appolonia, E. and Hribar, J., 1963. Load transfer in a step-taper pile. Journal of the Soil Mechanics and Foundations Division, 89 (6), 57–80.
  • Das, B., 2004. Principles of foundation engineering. USA: Brooks/Cole-Thomson Learning. Inc., 489.
  • De Nicola, A. and Randolph, M.F., 1993. Tensile and compressive shaft capacity of piles in sand. Journal of Geotechnical Engineering, 119 (12), 1952–1973. doi:https://doi.org/10.1061/(ASCE)0733-9410(1993)119:12(1952)
  • Dehghanpoor, A. and Ghazavi, M., 2012. Response of tapered piles under lateral harmonic vibrations. International Journal of GEOMATE, 2 (2), S1.
  • Dougherty, J.J. (2017). The development of the TAPERTUBE® PILE, DFP foundation products, LLC. McGraw-Hill. Available from http://www.pilelineonline.com/devtt.htm
  • Dutta, S., 1986. Influence of surface taper and shape of pile on ultimate load and uplift capacities. Indian Geotechnical Journal, 16, 167–180.
  • El Naggar, M.H. and Sakr, M., 2002. Cyclic response of axially loaded tapered piles. International Journal of Physical Modelling in Geotechnics, 2 (4), 01–12. doi:https://doi.org/10.1680/ijpmg.2002.020401
  • El Naggar, M.H. and Wei, J.Q., 1999a. Axial capacity of tapered piles established from model tests. Canadian Geotechnical Journal, 36 (6), 1185–1194. doi:https://doi.org/10.1139/t99-076
  • El Naggar, M.H. and Wei, J.Q., 1999b. Response of tapered piles subjected to lateral loading. Canadian Geotechnical Journal, 36 (1), 52–71. doi:https://doi.org/10.1139/t98-094
  • El Naggar, M.H. and Wei, J.Q., 2000a. Cyclic response of axially loaded tapered piles. Geotechnical Testing Journal, 23 (1), 100–115. doi:https://doi.org/10.1520/GTJ11128J
  • El Naggar, M.H. and Wei, J.Q., 2000b. Uplift behaviour of tapered piles established from model tests. Canadian Geotechnical Journal, 37 (1), 56–74. doi:https://doi.org/10.1139/t99-090
  • Elkasabgy, M. and El Naggar, M.H., 2013. Dynamic response of vertically loaded helical and driven steel piles. Canadian Geotechnical Journal, 50 (5), 521–535. doi:https://doi.org/10.1139/cgj-2011-0126
  • El-Marsafawi, H., Han, Y., and Novak, M., 1992. Dynamic experiments on two pile groups. Journal of Geotechnical Engineering, 118 (4), 576–592. doi:https://doi.org/10.1061/(ASCE)0733-9410(1992)118:4(576)
  • Fahmy, A. and El Naggar, M.H., 2017. Axial performance of helical tapered piles in sand. Geotechnical and Geological Engineering, 35 (4), 1549–1576. doi:https://doi.org/10.1007/s10706-017-0192-1
  • Feld, J., 1943. Discussion on friction pile foundations. Transactions of the American Society of Civil Engineers, 108, 143–144.
  • Fellenius, B. (2017). Basics of foundation design. accessed October 2018. Available from: www.Fellenius.net. www.Fellenius.net
  • Fellenius, B.H. and Altaee, A., 1999. Experimental study of axial behaviour of tapered piles: discussion. Canadian Geotechnical Journal, 36 (6), 1202–1203. doi:https://doi.org/10.1139/t99-100
  • Fellenius, B.H., Brusey, W.G., and Pepe, F., 2000. Soil set-up, variable concrete modulus, and residual load for tapered instrumented piles in sand. In Performance confirmation of constructed geotechnical facilities. ASCE, 98–114. doi:https://doi.org/10.1061/40486(300)6
  • Ghazavi, M. (2000a). Lateral analysis of tapered piles subjected to earthquake loading and supporting lifelines. Paper presented at the Proceedings of the 2nd Japan-Iran Workshop on Earthquake Engineering and Disaster Mitigation-Focusing on Lifeline Earthquake Engineering, Kobe, Japan.
  • Ghazavi, M. (2000b). Theoretical and experimental aspects of tapered piles subjected to static loads. Paper presented at the Proceedings of the fifth international conference on civil engineering. Iran.
  • Ghazavi, M. (2003). Behaviour of tapered piles subjected to dynamic loads. Paper presented at the Proceedings of the sixth international conference on civil engineering isfahan university of technology. Isfahan, Iran.
  • Ghazavi, M. (2006). Bearing capacity of tapered and step-tapered piles subjected to axial compressive loading, Proceedings of 7-th International Conference On Coastal, Ports & Marine Structures, KN Toosi University of Technology, Iran, Vol. 6.
  • Ghazavi, M., 2007. Analysis of kinematic seismic response of tapered piles. Geotechnical and Geological Engineering, 25 (1), 37. doi:https://doi.org/10.1007/s10706-006-0004-5
  • Ghazavi, M., 2008. Response of tapered piles to axial harmonic loading. Canadian Geotechnical Journal, 45 (11), 1622–1628. doi:https://doi.org/10.1139/T08-073
  • Ghazavi, M., Ahmadi-Bidgoli, H., and Hashemolhosseini, H. (2003). Numerical studies of tapered piles subjected to axial harmonic vibrations. Paper presented at the Proceedings of Sixth International Conference on Civil Engineering Isfahan, Iran: Isfahan University of Technology.
  • Ghazavi, M., Barkhordari, K., and Mahbod, A. (2007). Dynamic analysis of pile driving from various hammering locations along pile shaft. 4th International Conference on Earthquake Geotechnical Engineering, Paper No. 1754. Thessaloniki, Greece.
  • Ghazavi, M. and Dehghanpour, A. (2010). Dynamic Analysis of Piles under Lateral Harmonic Vibration.
  • Ghazavi, M. and Etaati, M. (2001). Analysis of tapered piles under axial loading using finite element method. Paper presented at the Proceedings of the second international conference on tall buildings. Iran University of Science and Technology, Tehran, Iran.
  • Gotman, A., 2000. Finite-element analysis of tapered piles under combined vertical and horizontal loadings. Soil Mechanics and Foundation Engineering, 37 (1), 5–12. doi:https://doi.org/10.1007/BF02484319
  • Gupta, P.S.K. and Rajagopal, K. (2015). Review of research on taper and stepped piles. Paper presented at the The 6th International Geotechnical Symposium on Disaster Mitigation in Special Geoenvironmental Conditions Chennai, India.
  • Han, Y. and Novak, M., 1988. Dynamic behaviour of single piles under strong harmonic excitation. Canadian Geotechnical Journal, 25 (3), 523–534. doi:https://doi.org/10.1139/t88-057
  • Hataf, N. and Shafaghat, A., 2015a. Numerical comparison of bearing capacity of tapered pile groups using 3D FEM. Geomechanics and Engineering, 9 (5), 547–567. doi:https://doi.org/10.12989/gae.2015.9.5.547
  • Hataf, N. and Shafaghat, A., 2015b. Optimizing the bearing capacity of tapered piles in realistic scale using 3D finite element method. Geotechnical and Geological Engineering, 33 (6), 1465–1473. doi:https://doi.org/10.1007/s10706-015-9912-6
  • Horvath, J.S., et al. (2004a). A new analytical method for the axial-compressive static capacity of tapered driven piles in coarse-grain soil. Paper presented at the International e-Conference on Modern Trends in Geotechnical Engineering, Geotechnical Challenges and Solutions. IIT Madras, India.
  • Horvath, J.S., et al., 2004a. Axial-compressive capacities of a new type of tapered steel pipe pile at the John F. Kennedy International Airport.
  • Horvath, J.S., et al., 2004b. A new type of tapered steel pipe pile for transportation applications. In: Geotechnical engineering for transportation projects. Los Angeles, California: ASCE Geotechnical Special Publication, 1299–1308.
  • Horvath, J.S., et al. (2004b). Tapered driven piles new directions for an old concept. Paper presented at the International e-Conference on Modern Trends in Geotechnical Engineering, Geotechnical Challenges and Solutions.
  • Horvath, J.S. and Trochalides, T., 2004. A half century of tapered-pile usage at the John F. Kennedy International Airport.
  • Ireland, H.O., 1957. Pulling tests on piles in sand. Paper presented to the Proceedings of the 4th International Conference on Soil Mechanics, London, England.
  • Ismael, N.F., 2001. Axial load tests on bored piles and pile groups in cemented sands. Journal of Geotechnical and Geoenvironmental Engineering, 127 (9), 766–773. doi:https://doi.org/10.1061/(ASCE)1090-0241(2001)127:9(766)
  • Ismael, N.F., 2003. Load tests on straight and step tapered bored piles in weakly cemented sand. International symposium on field measurements in geomechanics (6; Oslo 2003-09-15). Oslo, Norway: Division for Monitoring and Geophysics, Norwegian Geotechnical Institute.
  • Ismael, N.F., 2006. Analysis of lateral load tests on step tapered bored piles in calcareous sands. In: GeoCongress 2006: geotechnical engineering in the information technology age. Atlanta, Georgia, United States: ASCE, GeoCongress, 1–6. doi:https://doi.org/10.1061/40803(187)66
  • Ismael, N.F., 2009. Behavior of step tapered bored piles in sand under static lateral loading. Journal of Geotechnical and Geoenvironmental Engineering, 136 (5), 669–676. doi:https://doi.org/10.1061/(ASCE)GT.1943-5606.0000265
  • Jain, M., Rastogi, P., and Bhandari, R. (2013). Comparative behavior of tapered and uniform diameter piles in loose sands.
  • Khan, M.K., El Naggar, M.H., and Elkasabgy, M., 2008. Compression testing and analysis of drilled concrete tapered piles in cohesive-frictional soil. Canadian Geotechnical Journal, 45 (3), 377–392. doi:https://doi.org/10.1139/T07-107
  • Kishida, H. (1965). Bearing capacity of pile groups under eccentric loads in sand. Proc. 6th ICSMFE, Montreal, 2, 270–274.
  • Kodikara, J., Kong, K., and Haque, A., 2006. Numerical evaluation of side resistance of tapered piles in mudstone. Geotechnique, 56 (7), 505–510. doi:https://doi.org/10.1680/geot.2006.56.7.505
  • Kodikara, J.K. and Moore, I.D., 1993. Axial response of tapered piles in cohesive frictional ground. Journal of Geotechnical Engineering, 119 (4), 675–693. doi:https://doi.org/10.1061/(ASCE)0733-9410(1993)119:4(675)
  • Kong, G.Q., et al., 2013. Numerical study of a new belled wedge pile type under different loading modes. European Journal of Environmental and Civil Engineering, 17 (sup1), s65–s82. doi:https://doi.org/10.1080/19648189.2013.834586
  • Kurian, N.P. and Srinivas, M.S., 1995. Studies on the behaviour of axially loaded tapered piles by the finite element method. International Journal for Numerical and Analytical Methods in Geomechanics, 19 (12), 869–888. doi:https://doi.org/10.1002/nag.1610191204
  • Lee, J., Paik, K., Kim, D. and Hwang, S., 2009. Estimation of axial load capacity for bored tapered piles using CPT results in sand. Journal of geotechnical and geoenvironmental engineering, 135 (9), 1285–94. doi:https://doi.org/10.1061/(ASCE)GT.1943-5606.0000036
  • Lee, J.K., Jeong, S., and Kim, Y., 2018. Buckling of tapered friction piles in inhomogeneous soil. Computers and Geotechnics, 97, 1–6. doi:https://doi.org/10.1016/j.compgeo.2017.12.012
  • Liu, J., et al., 2012. Load transfer behaviour of a tapered rigid pile. Geotechnique, 62 (7), 649. doi:https://doi.org/10.1680/geot.11.T.001
  • Livneh, B. and El Naggar, M.H., 2008. Axial testing and numerical modeling of square shaft helical piles under compressive and tensile loading. Canadian Geotechnical Journal, 45 (8), 1142–1155. doi:https://doi.org/10.1139/T08-044
  • Mahmoud, M. and Burley, E., 1994. Lateral load capacity of single piles in sand. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 107 (3), 155–162. doi:https://doi.org/10.1680/igeng.1994.26468
  • Majumder, M. and Chakraborty, D., 2018. Bearing capacity of tapered piles in clay under undrained condition. International Journal of Geotechnical Engineering, 1–7. doi:https://doi.org/10.1080/19386362.2018.1514755
  • Manandhar, S. and Yasufuku, N., 2012. Analytical model for the end-bearing capacity of tapered piles using cavity expansion theory. Advances in Civil Engineering, 2012, 1–9. doi:https://doi.org/10.1155/2012/749540
  • Manandhar, S. and Yasufuku, N., 2013. Vertical bearing capacity of tapered piles in sands using cavity expansion theory. Soils and Foundations, 53 (6), 853–867. doi:https://doi.org/10.1016/j.sandf.2013.10.005
  • Manna, B. and Baidya, D., 2009. Vertical vibration of full-scale pile—analytical and experimental study. Journal of Geotechnical and Geoenvironmental Engineering, 135 (10), 1452–1461. doi:https://doi.org/10.1061/(ASCE)GT.1943-5606.0000110
  • Mansur, C.I., Hunter, A. H., 1970 Pile tests-Arkansas River project. Journal of Soil Mechanics and Foundation Engineering, 96 (5), 1545–82.
  • Meyer, B.J. and Reese, L.C. (1979). Analysis of single piles under lateral loading
  • Meyerhof, G., Sastry, V., and Yalcin, A., 1988. Lateral resistance and deflection of flexible piles. Canadian Geotechnical Journal, 25 (3), 511–522. doi:https://doi.org/10.1139/t88-056
  • Naggar, M.H.E. and Sakr, M., 2000. Evaluation of axial performance of tapered piles from centrifuge tests. Canadian Geotechnical Journal, 37 (6), 1295–1308. doi:https://doi.org/10.1139/t00-049
  • Nordlund, R., 1963. Bearing capacity of piles in cohesionless soils. Journal of the Soil Mechanics and Foundations Division, 89 (3), 1–36.
  • Norris, G. (1986). Theoretically based BEF laterally loaded pile analysis. Paper presented at the Proceedings of the 3rd International Conference on Numerical Methods in Offshore Piling. Nantes, France.
  • Novak, M., 1974. Dynamic stiffness and damping of piles. Canadian Geotechnical Journal, 11 (4), 574–598. doi:https://doi.org/10.1139/t74-059
  • Novak, M., 1977. Vertical vibration of floating piles. Journal of the Engineering Mechanics Division, 103 (1), 153–168.
  • Novak, M. and Aboul-Ella, F., 1978. Impedance functions of piles in layered media. Journal of the Engineering Mechanics Division, 104 (3), 643–661.
  • Novak, M. and Grigg, F.R., 1976. Dynamic experiments with small pile foundations. Canadian Geotechnical Journal, 13 (4), 372–385. doi:https://doi.org/10.1139/t76-039
  • Paik, K., Lee, J., and Kim, D., 2010. Axial response and bearing capacity of tapered piles in sandy soil. Geotechnical Testing Journal, 34 (2), 122–130.
  • Paik, K., Lee, J., and Kim, D., 2013. Calculation of the axial bearing capacity of tapered bored piles. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 166 (5), 502–514. doi:https://doi.org/10.1680/geng.10.00127
  • PETAJA, J. (1981). Experiences of tapered friction piles, Helsinki, Finland
  • Pise, P.J., 1984. Lateral response of free-head pile. Journal of Geotechnical Engineering, 110 (12), 1805–1809. doi:https://doi.org/10.1061/(ASCE)0733-9410(1984)110:12(1805)
  • Poulos, H.G. (1971). Behavior of laterally loaded piles: I-Single piles. Journal of the Soil Mechanics and Foundations Division. Vol. 97, PROC PAPER 8092. ASCE, 711–731.
  • Poulos, H.G., 1979. Group factors for pile-deflection estimation. Journal of Geotechnical and Geoenvironmental Engineering, 105(ASCE, 15032.
  • Poulos, H.G., 1982. Single pile response to cyclic lateral load. Journal of Geotechnical and Geoenvironmental Engineering, 108 (GT3). ASCE, 355–375.
  • Poulos, H.G. and Davis, E.H. (1980). Pile foundation analysis and design.
  • Puri, V. (1988). Observed and predicted natural frequency of a pile foundation. Paper presented at the Proc., 2nd Int. Conf. on Case Histories in Geotechnical Engineering. USA: Missouri University of Science and Technology.
  • Randolph, M.F., 1981. The response of flexible piles to lateral loading. Geotechnique, 31 (2), 247–259. doi:https://doi.org/10.1680/geot.1981.31.2.247
  • Reddy, A.S. and Ramasamy, G., 1973. Analysis of an axially and laterally loaded tapered pile in sand. Soils and Foundations, 13 (4), 15–27. doi:https://doi.org/10.3208/sandf1972.13.4_15
  • Rybnikov, A., 1990. Experimental investigations of bearing capacity of bored-cast-in-place tapered piles. Soil Mechanics and Foundation Engineering, 27 (2), 48–52. doi:https://doi.org/10.1007/BF02306100
  • Saha, S. and Ghosh, D., 1986. Vertical vibration of tapered piles. Journal of Geotechnical Engineering, 112 (3), 290–302. doi:https://doi.org/10.1061/(ASCE)0733-9410(1986)112:3(290)
  • Sakr, M. and El Naggar, M.H., 2003. Centrifuge modeling of tapered piles in sand. Geotechnical Testing Journal, 26 (1), 22–35.
  • Sakr, M., El Naggar, M.H., and Nehdi, M., 2005. Lateral behaviour of composite tapered piles in dense sand. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 158 (3), 145–157. doi:https://doi.org/10.1680/geng.2005.158.3.145
  • Sakr, M., Naggar, M.H.E., and Nehdi, M., 2004. Load transfer of fibre-reinforced polymer (FRP) composite tapered piles in dense sand. Canadian Geotechnical Journal, 41 (1), 70–88. doi:https://doi.org/10.1139/t03-067
  • Seiler, J. and Keeney, W., 1944. The efficiency of piles in groups. Wood Preserving News, 22 (11), 109–118.
  • Shafaghat, A. (2013). Numerical comparison of bearing capacity of tapered and cylindrical pile groups with three-dimensional finite element method. (MSc). Shiraz University, Iran,
  • Shafaghat, A., et al., 2018. Effect of footing shape on bearing capacity and settlement of closely spaced footings on sandy soil. International Journal of Geotechnical and Geological Engineering, 12 (11), 676–680.
  • Society, C. G, 1978. Canadian foundation engineering manual. Canada: Canadian Geotechnical Society.
  • Spronken, J.T. (1998). Bearing capacity of tapered piles. (MSc). University of Calgary
  • Tabaroei, A., Abrishami, S., and Hosseininia, E.S., 2017. Comparison between two different pluviation setups of sand specimens. Journal of Materials in Civil Engineering, 29 (10), 04017157. doi:https://doi.org/10.1061/(ASCE)MT.1943-5533.0001985
  • Tavasoli, O. and Ghazavi, M., 2018. Wave propagation and ground vibrations due to non-uniform cross-sections piles driving. Computers and Geotechnics, 104, 13–21. doi:https://doi.org/10.1016/j.compgeo.2018.08.010
  • Tavasoli, O. and Ghazavi, M., 2020. Effect of tapered and semi-tapered geometry on the offshore piles driving performance. Ocean Engineering, 201, 107147. doi:https://doi.org/10.1016/j.oceaneng.2020.107147
  • Tavenas, F.A., 1971. Load tests results on friction piles in sand. Canadian Geotechnical Journal, 8 (1), 7–22. doi:https://doi.org/10.1139/t71-002
  • Terzaghi, K., Peck, R.B., and Mesri, G. (1996). Soil mechanics in engineering practice: John Wiley & Sons.
  • Vali, R., et al., 2019. A three-dimensional numerical comparison of bearing capacity and settlement of tapered and under-reamed piles. International Journal of Geotechnical Engineering, 13 (3), 236–248. doi:https://doi.org/10.1080/19386362.2017.1336586
  • Vesic, A.S., 1967. A study of bearing capacity of deep foundations. Engineering experiment station.
  • Vesic, A.S., 1977. Design of pile foundations. NCHRP Synthesis of Highway Practice Transportation Research Board, (42), 68.
  • Wei, J. and El Naggar, M.H., 1998. Experimental study of axial behaviour of tapered piles. Canadian Geotechnical Journal, 35 (4), 641–654. doi:https://doi.org/10.1139/t98-033
  • Wei, J.Q. (1998). Experimental investigation of tapered piles. (MSc). University of Western Ontario,
  • Wei, J.Q. and El Naggar, M.H., 1999. Experimental study of axial behaviour of tapered piles: reply. Canadian Geotechnical Journal, 36 (6), 1204–1205. doi:https://doi.org/10.1139/t99-099
  • Whitaker, T., 1957. Experiments with model piles in groups. Geotechnique, 7 (4), 147–167. doi:https://doi.org/10.1680/geot.1957.7.4.147
  • Xie, J. and Vaziri, H.H., 1991. Vertical vibration of nonuniform piles. Journal of Engineering Mechanics, 117 (5), 1105–1118. doi:https://doi.org/10.1061/(ASCE)0733-9399(1991)117:5(1105)
  • Zhan, Y.-G., Wang, H., and Liu, F.-C., 2012. Numerical study on load capacity behavior of tapered pile foundations. Electronic Journal of Geotechnical Engineering, 17, 1969–1980.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.