145
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Subgrade reaction modulus of rock masses under the load of single and multiple footings

&
Pages 778-796 | Received 05 Jul 2020, Accepted 09 Feb 2021, Published online: 22 Feb 2021

References

  • Alhossein, H., Carter, J.P., and Booker, J.R., 1992. Finite element analysis of rigid footings on jointed rock. In: Proceedings of the 3rd International Conference on Computational Plasticity, Vol. 1. Barceona, Spain, 935–945.
  • AlKhafaji, H., Imani, M., and Fahimifar, A., 2020. Ultimate bearing capacity of rock mass foundations subjected to seepage forces using modified Hoek-Brown criterion. Rock Mechanics and Rock Engineering, 53, 251–268. doi:https://doi.org/10.1007/s00603-019-01905-6
  • Avci, B. and Gurbuz, A., 2018. Modulus of subgrade reaction that varies with magnitude of displacement of cohesionless soil. Arabian Journal of Geosciences, 351 (11), 1–8. doi:https://doi.org/10.1007/s12517-018-3713-1.
  • Biot, M.A., 1937. Bending of infinite beams on an elastic foundation. Applied Mechanics American Society of Mechanical Engineers, 59, A1–A7.
  • Carter, J.P. and Kullhawy, F.H., 1988. Analysis and design of drilled shaft foundations socketed into rock. In: Rep. EL-5918. Palo Alto, California: Electric Power Research Institute.
  • Fattah, M.Y., Shlash, K.T., and Mohammad, H.A., 2014a. Bearing capacity of rectangular footing on sandy soil bounded by a wall. Arabian Journal for Science and Engineering, 39, 7621–7633. doi:https://doi.org/10.1007/s13369-014-1353-7
  • Fattah, M.Y., Shlash, K.T., and Mohammad, H.A., 2014b. Experimental study on the behavior of strip footing on sandy soil bounded by a wall. Arabian Journal of Geosciences, 8 (7), 4779–4790. doi:https://doi.org/10.1007/s12517-014-1564-y.
  • Fattah, M.Y., Shlash, K.T., and Mohammad, H.A., 2014c. Experimental study on the behavior of bounded square footing on sandy soil. Engineering and Technology Journal, University of Technology – Iraq, 32 (Part (A),5), 1083–1105.
  • Hoek, E. and Brown, E.T., 1980. Empirical strength criterion for rock masses. ASCE Journal of Geotechnical Engineering, 106, 1013–1035.
  • Hoek, E. and Dierichs, M.S., 2005. Empirical estimation of rock mass modulus. International Journal of Rock Mechanics and Mining Sciences, 43, 203–215. doi:https://doi.org/10.1016/j.ijrmms.2005.06.005
  • Imanzadeh, S., Denis, A., and Marache, A., 2013. Effect of uncertainty in soil and structure parameters for buried pipes. Geotech and Geophys, Site Characterization, 4, 1847–1853.
  • Javid, A.H., Fahimifar, A., and Imani, M., 2015. Numerical investigation on the bearing capacity of two interfering strip footings resting on a rock mass. Computers and Geotechnics, 69, 514–528. doi:https://doi.org/10.1016/j.compgeo.2015.06.005
  • Klopple, K. and Glock, D., 1979. Theoretische und experimentelle untersuchungen zu den traglastproblemen beigewiecher, in die erde eingebetteter rohre. Veroffentlichung des Instituts Statik und Stahlbau der Technischen Hochschule Darmstadt, H–10.
  • Kullhawy, F.H. and Carter, J.P., 1992. Settlement and bearing capacity of foundations on rock masses. In: F.G. Bell, ed. Engineering in rock masses. Oxford, UK: Butterworth-Heinemann, 231–245.
  • Lee, J. and Jeong, S., 2016. Experimental study of estimating the subgrade reaction modulus on jointed rock foundations. Rock Mechanics and Rock Engineering, 49, 2055–2064. doi:https://doi.org/10.1007/s00603-015-0905-9
  • Lees, A., 2016. Geotechnical finite element analysis. 1st ed. London: ICE Publishing.
  • Mabrouki, A., Benmeddour, D., and Mellas, M., 2010. Numerical study of the bearing capacity for two interfering strip footing on sands. Computers and Geotechnics, 37, 431–439. doi:https://doi.org/10.1016/j.compgeo.2009.12.007
  • Mansouri, M., Imani, M., and Fahimifar, A., 2019. Ultimate bearing capacity of rock masses under square and rectangular footings. Computers and Geotechnics, 111, 1–9. doi:https://doi.org/10.1016/j.compgeo.2019.03.002
  • Meyerhof, G.G. and Baikie, L.D., 1963. Strength of steel sheets bearing against compacted sand backfill. Highway Research Record, 30, 1–19.
  • Saada, Z., Maghous, S., and Garnier, D., 2008. Bearing capacity of shallow foundations on rocks obeying a modified Hoek–Brown failure criterion. Computers and Geotechnics, 38, 144–154. doi:https://doi.org/10.1016/j.compgeo.2007.06.003
  • Sadrekarimi, J. and Akbarzad, M., 2009. Comparative study of methods of determination of coefficient of subgrade reaction. Electronic Journal of Geotechnical Engineering, 14, 1–14.
  • Sargazi, O. and Hosseininia, E., 2017. bearing capacity of ring footing on cohesionless soil under eccentric load. Computers and Geotechnics, 92, 169–178. doi:https://doi.org/10.1016/j.compgeo.2017.08.003
  • Selvadurai, A.P.S., 1985. Soil–pipeline interaction during ground movement. In: F.L. Bennett and J.L. Machemehl, eds. Arctic, Civil engineering in the Arctic offshore. ASCE speciality conference. San Francisco, 763–773.
  • Shamloo, S. and Imani, M., 2021. Upper bound solution for the bearing capacity of two adjacent footings on rock masses. Computers and Geotechnics, 129, 1–14. doi:https://doi.org/10.1016/j.compgeo.2020.103855
  • Terzaghi, K.V., 1955. Evaluation of coefficient of subgrade reaction. Geotechnique, 5 (4), 297–326. doi:https://doi.org/10.1680/geot.1955.5.4.297.
  • Vásárhelyi, B., 2009. A possible method for estimating the Poisson’s rate values of the rock masses. Acta Geodaetica Geophys Hungarica, 44 (3), 313–322. doi:https://doi.org/10.1556/AGeod.44.2009.3.4.
  • Vesic, A.B., 1961. Beams on elastic subgrade and Winkler’s hypothesis. In: Proceedings of the Fifth International Conference on Soil Mechanics and Foundation Engineering. Paris, 845–850.
  • Vlassov, V.Z. and Leontiev, N.N., 1966. Beams, plates, and shells on elastic foundations. Translated from Russian. Jerusalem: Israel Program for Scientific Translations.
  • Wyllie, D.C., 1999. Foundations on rock. 2nd ed. London, UK: E & FN Spon.
  • Yang, X. and Yin, J., 2005. Upper bound solution for ultimate bearing capacity with a modified Hoek–Brown failure criterion. International Journal of Rock Mechanics and Mining Sciences, 42, 550–560. doi:https://doi.org/10.1016/j.ijrmms.2005.03.002
  • Ziaie Moayed, R. and Naeini, S.A., 2006. Evaluation of modulus of subgrade reaction in gravely soils based on standard penetration test (SPT). Chapter 115. In: Proceedings of the sixth international conference on physical modelling in geotechnics, Hong Kong.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.