128
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Multiscale modelling of the seismic response of shallow foundations on saturated granular soils

Pages 1073-1094 | Received 05 Mar 2020, Accepted 30 Mar 2021, Published online: 20 Apr 2021

References

  • Abdelhamid, Y. and El Shamy, U., 2014. Pore-scale modeling of surface erosion in a particle bed. International Journal for Numerical and Analytical Methods in Geomechanics, 38 (2), 142–166. doi:10.1002/nag.2201.
  • Abdelhamid, Y. and El Shamy, U., 2016. Pore-scale modeling of fine particles migration in granular filters. International Journal of Geomechanics, ASCE, 16 (3), 04015086. doi:10.1061/(ASCE)GM.1943-5622.0000592.
  • Adrianopoulos, K., Papadimitriou, A., and Bouckovalas, G., 2007. Use of a new bouding surface model for the analysis of earthquake-induced liquefaction phenomena. Proc. of the 4th nternational conference on earthquake geotechnical engineering, 25–28 June 2007, Thessaloniki, Greece.
  • Anand, A., et al., 2008. Predicting discharge dynamics from a rectangular hopper using the discrete element method (DEM). Chemical Engineering Science, 63 (24), 5821–5830. doi:10.1016/j.ces.2008.08.015.
  • Andrade, J. and Borja, R., 2007. Modeling deformation banding in dense and loose fluid-saturated sands. Finite Elements in Analysis and Design, 43 (5), 361–383. doi:10.1016/j.finel.2006.11.012.
  • Borja, R., et al., 1999. Dynamic response of saturated dense sand in laminated centrifuge container. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 125 (3), 187–197. doi:10.1061/(ASCE)1090-0241(1999)125:3(187).
  • Bouckavalas, G. and Dakoulas, P., 2007. Liquefaction performance of shallow foundations in presence of a soil crust. In: K. Pitilakis, ed. Earthquake geotechnical engineering. Springer, 245–276.
  • Byrne, P. and Seid-Karbasi, M., 2007. Seismic liquefaction, lateral spreading, and flow slides: a numerical investigation into void redistribution. Canadian Geotechnical Journal, 44 (7), 873–890. doi:10.1139/t07-027.
  • Chen, F., Drumm, E.C., and Guiochon, G., 2011. Coupled discrete element and finite volume solution of two classical soil mechanics problems. Computers and Geotechnics, 38 (5), 638–647. doi:10.1016/j.compgeo.2011.03.009.
  • Comiti, J. and Renaud, M., 1989. A new model for determining mean structure parameters of fixed beds from pressure drop measurements: application to beds packed with parallepipedal particles. Chemical Engineering Science, 44 (7), 1817–1823. doi:10.1016/0009-2509(89)80031-4.
  • Cundall, P. and Strack, O., 1979. A discrete numerical model for granular assemblies. Geotechnique, 29 (1), 47–65. doi:10.1680/geot.1979.29.1.47
  • Dafalias, Y. and Manzari, M., 1997. A critical state two-surface plasticity model for sands. Geotechnique, 47 (2), 255–272. doi:10.1680/geot.1997.47.2.255.
  • Dafalias, Y. and Manzari, M., 2004. Simple plasticity sand model accounting for fabric change effects. Journal of Engineering Mechanics, 130 (6), 622–634. doi:10.1061/(ASCE)0733-9399(2004)130:6(622).
  • Das, B., 2010. Principles of geotechnical engineering. 7th. Cengage learning.
  • Desai, C. and Siriwardane, H., 1984. Constitutive laws for engineering materials (with emphasis on geologic materials). Eaglewood Cliffs, NJ: Prentice-Hall.
  • Dobry, R. and Ng, T., 1992. Discrete modelling of stress-strain behavior of granular media at small and large strains. Engineering Computations, 9 (2), 129–143. doi:10.1108/eb023853.
  • Edwards, S., 1998. The equations of stress in a granular material. Physica A, 249 (1–4), 226–231. doi:10.1016/S0378-4371(97)00469-X.
  • El Shamy, U., 2004. A coupled continuum-discrete fluid-particle model for granular soil liquefaction. PhD Thesis. Troy, NY: Rensselaer Polytechnic Institute.
  • El Shamy, U., et al., 2010. Micromechanical aspects of liquefaction-induced lateral spreading. International Journal of Geomechanics, ASCE, 10 (5), 190–201. doi:10.1061/(ASCE)GM.1943-5622.0000056.
  • El Shamy, U. and Abdelhamid, Y., 2014. Modeling granular soils liquefaction using coupled lattice boltzmann method and discrete element method. Soil Dynamics and Earthquake Engineering, 67, 119–132. doi:10.1016/j.soildyn.2014.09.004.
  • El Shamy, U. and Abdelhamid, Y., 2016. Some aspects of the impact of multidirectional shaking on liquefaction of level and sloping granular deposits. Journal of Engineering Mechanics, ASCE, C4016003. doi:10.1061/(ASCE)EM.1943-7889.0001049.
  • El Shamy, U. and Aydin, F., 2008. Multiscale modeling of flood-induced piping in river levees. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 134 (9), 1385–1398. doi:10.1061/(ASCE)1090-0241(2008)134:9(1385).
  • El Shamy, U. and Sizkow, S.F., 2021. Coupled smoothed particle hydrodynamics-discrete element method simulations of soil liquefaction and its mitigation using gravel drains. Soil Dynamics and Earthquake Engineering, 140, 106460. doi:10.1016/j.soildyn.2020.106460.
  • El Shamy, U. and Zeghal, M., 2005. Coupled continuum-discrete model for saturated granular soils. Journal of Engineering Mechanics, ASCE, 131 (4), 413–426. doi:10.1061/(ASCE)0733-9399(2005)131:4(413).
  • El Shamy, U. and Zeghal, M., 2007. A micro-mechanical investigation of the dynamic response and liquefaction of saturated granular soils. Soil Dynamics and Earthquake Engineering, 27 (8), 712–729. doi:10.1016/j.soildyn.2006.12.010.
  • Elgamal, A., et al., 2003. Modeling of cyclic mobility in saturated cohesionless soils. International Journal of Plasticity, 19 (6), 883–905. doi:10.1016/S0749-6419(02)00010-4.
  • Elgamal, A., Lu, J., and Yang, Z., 2005. Liquefaction-induced settlement of shallow foundations and remediation: 3d numerical simulation. Earthquake Engineering, 9 (1), 17–45. doi:10.1080/13632460509350578.
  • Ergun, S., 1952. Fluid flow through packed columns. Chemical Engineering Progress, 43 (2), 89–94.
  • Evan, T., et al., 2009. Visualization and analysis of microstructure in three-dimensional discrete numerical models. Journal of Computing in Civil Engineering, ASCE, 23 (5), 277–287. doi:10.1061/(ASCE)0887-3801(2009)23:5(277).
  • Fattah, M.Y., Al-Mosawi, M.J., and Al-Ameri, A.F.I., 2017a. Dynamic response of saturated soil - foundation system acted upon by vibration. Journal of Earthquake Engineering, 21 (7), 1158–1188. doi:10.1080/13632469.2016.1210060.
  • Fattah, M.Y., Al-Mosawi, M.J., and Al-Americ, A.F., 2017b. Stresses and pore water pressure induced by machine foundation on saturated sand. Ocean Engineering, 146, 268–281. doi:10.1016/j.oceaneng.2017.09.055.
  • Fattah, M.Y., Salim, N.M., and Al-Shammary, W.T., 2015. Effect of embedment depth on response of machine foundation on saturated sand. Arabian Journal for Science and Engineering, 40 (11), 3075–3098. doi:10.1007/s13369-015-1793-8.
  • Ferziger, J. and Peric, M., 1999. Computational methods for fluid dynamics. 2nd. Berlin, Germany: Springer.
  • Frye, K.M. and Marone, C., 2002. The effect of particle dimensionality on granular friction in laboratory shear zones. Geophysical Research Letters, 29 (19), 22–1–22–4. doi:10.1029/2002GL015709.
  • Gadre, A. and Dobry, R., 1998. Lateral cyclic loading centrifuge tests on square embedded footing. Journal of Geotechnical and Geoenvironmental Engineering, 124 (11), 1128–1138. doi:10.1061/(ASCE)1090-0241(1998)124:11(1128).
  • Gajan, S., et al., 2005. Centifuge modeling of load-deformation behaviour of rocking shallow foundations. Soil Dynamics and Earthquake Engineering, 25 (7–10), 773–783. doi:10.1016/j.soildyn.2004.11.019
  • Goren, L., et al., 2011. The mechanical coupling of fluid-filled granular material under shear. Pure and Applied Geophysics, 168 (12), 2289–2323. doi:10.1007/s00024-011-0320-4.
  • Guo, Y. and Yu, X.B., 2015. Understanding the microscopic moisture migration in pore space using DEM simulation. Journal of Rock Mechanics and Geotechnical Engineering, 7 (2), 171–177. doi:10.1016/j.jrmge.2015.03.004.
  • Itasca, 2005. Particle flow code, PFC3D, release 3.1. Minneapolis, MN: Itasca Consulting Group, Inc.
  • Jackson, R., 2000. The dynamics of fluidized particles. Cambridge, UK: Cambridge University Press.
  • Jensen, R., et al., 1999. Dem simulation of granular media-structure interface: effects of surface roughness and particle shape. International Journal for Numerical and Analytical Methods in Geomechanics, 23 (6), 531–547. doi:10.1002/(SICI)1096-9853(199905)23:6<531::AID-NAG980>3.0.CO;2-V.
  • King, G., Dickin, E., and Lyndon, A., 1984. The development of a medium size centrifugal testing facilities. In: Symposium on the application of centrifuge modeling to geotechnical design, Manchester.
  • Klisinski, M., 1988. Plasticity theory based on fuzzy sets. Journal of Engineering Mechanics, ASCE, 114 (4), 563–582. doi:10.1061/(ASCE)0733-9399(1988)114:4(563).
  • Kutter, B., 1992. Dynamic centrifuge modeling of geotechnical structures. Transportation research record, ( 1336), p. 24–30.
  • Liu, G., et al., 2015. Numerical simulation on undrained triaxial behavior of saturated soil by a fluid coupled-DEM model. Engineering Geology, 193, 256–266. doi:10.1016/j.enggeo.2015.04.019.
  • Liu, L. and Dobry, R., 1997. Seismic response of shallow foundation on liquefiable sand. Geotechnical and Geoenvironmental Engineering, ASCE, 123 (6).
  • Lu, J., et al., 2004. Parallel finite element modeling of earthquake liquefaction response. International Journal of Earthquake Engineering and Engineering Vibration, 3 (1), 23–37. doi:10.1007/BF02668848.
  • Lu, J., et al., 2011. Large scale numerical modeling in geotechnical earthquake engineering. International Journal of Geomechanics, ASCE, 11, 490–503. SPECIAL ISSUE: Material and Computer Modeling. doi:10.1061/(ASCE)GM.1943-5622.0000042.
  • Madabhushi, S. and Zeng, X., 1998. Seismic response of gravity quay walls. II: numerical modeling. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 124 (5), 418–427. doi:10.1061/(ASCE)1090-0241(1998)124:5(418).
  • Manzari, M. and Dafalias, Y., 1997. A critical state two-surface plasticity model for sands. Geotechnique, 47 (2), 252–272.
  • Mononobe, N. and Matsuo, H., 1929. On the determination of earth pressure during earthquakes. Proc., world engineering congress.
  • Mylonakis, G., Nikolaou, S., and Gazetas, G., 2006. Footings under seismic loading: analysis and design issues with emphasis on bridge foundations. Journal of Soil Dynamics and Earthquake Engineering, 26 (9), 824–853. doi:10.1016/j.soildyn.2005.12.005.
  • O’Sullivan, C., 2011. Particulate discrete element modelling: a geomechanics perspective. New York: Taylor and Francis.
  • Okabe, S., 1929. General theory of earth pressures. Journal of the Japan Society of Civil Engineering, 12, 1.
  • Okada, Y. and Ochiai, H., 2007. Coupling pore-water pressure with distinct element method and steady state strengths in numerical triaxial compression tests under undrained conditions. Landslides, 4 (4), 357–369. doi:10.1007/s10346-007-0092-1.
  • Patankar, S., 1980. Numerical heat transfer and fluid flow. Taylor and Francis.
  • Peng, J., et al., 2004. ParCYCLIC: finite element modeling of earthquake liquefaction response on parallel computers. International Journal for Numerical and Analytical Methods in Geomechanics, 28 (12), 1207–1232. doi:10.1002/nag.384.
  • Prevost, J., 1985. A simple plasticity theory for frictional cohesionless soils. Soil Dynamics and Earthquake Engineering, 4 (1), 9–17. doi:10.1016/0261-7277(85)90030-0.
  • Radjai, F. and Dubois, F., 2011. Discrete-element modeling of granular materials. Mechanics and civil engineering. ISBN: 9781848212602. France: Laboratory (LMGC), University of Montpellier 2.
  • Ravichandran, N., et al., 2010. Micro-scale modeling of saturated sandy soil behavior subjected to cyclic loading. Soil Dynamics and Earthquake Engineering, 30 (11), 1212–1225. doi:10.1016/j.soildyn.2010.05.002.
  • Rayhani, M.T. and El Naggar, M.H., 2011. Physical and numerical modeling of seismic soil-structure interaction in layered soils. Geotechnical and Geological Engineering. doi:10.1007/s10706-011-9471-4.
  • Regueiro, R. and Borja, R., 1999. A finite element model of localized deformation in frictional materials taking a strong discontinuity approach. Finite Elements in Analysis and Design, 33 (4), 283–315. doi:10.1016/S0168-874X(99)00050-5.
  • Sun, X., Sakai, M., and Yamada, Y., 2013. Three-dimensional simulation of a solid–liquid flow by the DEM–SPH method. Journal of Computational Physics, 248, 147–176. doi:10.1016/j.jcp.2013.04.019.
  • Taiebet, M., Dafalias, Y., and Peek, R., 2010. A destructuration theory and its application to SANICLAY model. International Journal for Numerical and Analytical Methods in Geomechanics, 34 (10), 1009–1040. doi:10.1002/nag.841.
  • Thornton, C., 2000. Numerical simulations of deviatoric shear deformation of granular media. Geotechnique, 50 (1), 43–53. doi:10.1680/geot.2000.50.1.43.
  • Ting, J. and Corkum, B.T., 1992. Computational laboratory for discrete element geomechanics. Journal of Computing in Civil Engineering, ASCE, 6 (2), 129–146. doi:10.1061/(ASCE)0887-3801(1992)6:2(129).
  • Tsuji, Y., Kawaguchi, T., and Tanaka, T., 1993. Discrete particle simulation of two-dimensional fluidized bed. Powder Technology, 77 (1), 79–87. doi:10.1016/0032-5910(93)85010-7.
  • Wood, D., 1990. Soil behavior and critical state soil mechanics. Cambridge, UK: Cambridge University Press.
  • Yang, Z. and Elgamal, A., 2002. Influence of permeability on liquefaction-induced shear deformation. Journal of Engineering Mechanics, ASCE, 128 (7), 720–729. doi:10.1061/(ASCE)0733-9399(2002)128:7(720).
  • Zamani, N. and El Shamy, U., 2011. Analysis of wave propagation in dry granular soils using DEM simulations. Acta Geotechnica, 6 (3), 167–182. doi:10.1007/s11440-011-0142-7.
  • Zhang, D., Huang, X., and Zhao, Y., 2012. Algorithms for generating three-dimensional aggregates and asphalt mixture samples by the discrete element method. Journal of Computing in Civil Engineering, ASCE.
  • Zhou, Z., et al., 2008. Discrete particle simulation of gas-solid flow in a blast furnace. Computers & Chemical Engineering, 32 (8), 1760–1772. doi:10.1016/j.compchemeng.2007.08.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.