129
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Large-scale pullout analysis of geo scarp tyre reinforcement with oblique transverse member

&
Pages 1095-1109 | Received 18 Mar 2020, Accepted 30 Mar 2021, Published online: 11 May 2021

References

  • Abdi, M. and Zandieh, A., 2014. Experimental and numerical analysis of large scale pull out tests conducted on clays reinforced with geogrids encapsulated with coarse material. Geotextiles and Geomembranes, 42 (5), 494–504. doi:10.1016/j.geotexmem.2014.07.008.
  • Abu-Farsakh, M., Ardah, A., and Voyiadjis, G., 2018. 3D finite element analysis of the geosynthetic reinforced soil-integrated bridge system (GRS-IBS) under different loading conditions. Transportation Geotechnics, 15, 70–83. doi:10.1016/j.trgeo.2018.04.002
  • Ahmed, I. 1993. Laboratory study on properties of rubber-soils. purdue university. Indiana, Joint Highway Research Project.
  • Alfaro, M., Hayashi, S., Miura N., and Watanabe K., 1995a. Pullout interaction mechanism of geogrid strip reinforcement. Geosynthetics International, 2 (4), 679–698. doi:10.1680/gein.2.0030.
  • Alfaro, M.C., Miura, N., and Bergado, D.T., 1995b. Soil-geogrid reinforcement interaction by pullout and direct shear tests. Geotechnical Testing Journal, 18 (2), 157–167. doi:10.1520/GTJ10319J.
  • ASTMD6270. 2012. Standard practice for use of scrap tires in civil engineering applications. PA: ASTM International West Conshohocken.
  • ASTMD6706. 2013. Standard test method for measuring geosynthetic pullout resistance in soil. PA: ASTM International West Conshohocken.
  • Balunaini, U., et al. 2009. Tire shred backfill in mechanically stabilized earth wall applications. West Lafayette, Indiana, FHWA/IN/JTRP-2008/17.
  • Balunaini, U., Mohan, V. K. D., Prezzi, M., and Salgado, R., 2014a. Shear strength of tyre chip–sand and tyre shred–sand mixtures. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 167 (6), 585–595. doi:10.1680/geng.13.00097.
  • Balunaini, U., Yoon, S., Prezzi, M., and Salgado, R., 2014b. Pullout response of uniaxial geogrid in tire shred–sand mixtures. Geotechnical and Geological Engineering, 32 (2), 505–523. doi:10.1007/s10706-014-9731-1.
  • Bandyopadhyay, S., Sengupta, A., and Reddy, G., 2015. Performance of sand and shredded rubber tire mixture as a natural base isolator for earthquake protection. Earthquake Engineering and Engineering Vibration, 14 (4), 683–693. doi:10.1007/s11803-015-0053-y.
  • Bathurst, R.J., Huang, B., and Allen, T.M., 2012. LRFD calibration of the ultimate pullout limit state for geogrid reinforced soil retaining walls. International Journal of Geomechanics, 12 (4), 399–413. doi:10.1061/(ASCE)GM.1943-5622.0000219.
  • Berg, R., Christopher, B., and Samtani, N., 2009. Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes–Volume I, US Department of Transportation, Federal Highway Administration, Washington DC, Publication No.
  • Bergado, D., et al., 1993. Interaction behaviour of steel grid reinforcements in a clayey sand. Geotechnique, 43 (4), 589–603. doi:10.1680/geot.1993.43.4.589.
  • Bergado, D.T., Chai, J.C., and Miura, N., 1996. Prediction of pullout resistance and pullout force-displacement relationship for inextensible grid reinforcements. Soils and Foundations, 36 (4), 11–22. doi:10.3208/sandf.36.4_11.
  • Bergado, D.T., Hardiyatimo, H.C., Cisneros, C.B., Chun, C.J., Alfaro, M.C., Balasubramaniam, A.S. and Anderson, L.R., 1992. Pullout resistance of steel geogrids with weathered clay as backfill material. Geotechnical Testing Journal, 15 (1), 33–46
  • Bilgin, Ö. and Mansour, E., 2014. Effect of reinforcement type on the design reinforcement length of mechanically stabilized earth walls. Engineering Structures, 59, 663–673. doi:10.1016/j.engstruct.2013.11.013
  • Cardile, G., Gioffrè, D., Moraci, N., and Calvarano, L. S., 2017. Modelling interference between the geogrid bearing members under pullout loading conditions. Geotextiles and Geomembranes, 45 (3), 169–177. doi:10.1016/j.geotexmem.2017.01.008.
  • Chegenizadeh, A., Keramatikerman, M., Dalla Santa, G., and Nikraz, H., 2018. Influence of recycled tyre amendment on the mechanical behaviour of soil-bentonite cut-off walls. Journal of Cleaner Production, 177, 507–515. doi:10.1016/j.jclepro.2017.12.268
  • Cristelo, N., Félix, C., Lopes, M. L., and Dias, M., 2016. Monitoring and numerical modelling of an instrumented mechanically stabilised earth wall. Geosynthetics International, 23 (1), 48–61. doi:10.1680/jgein.15.00032.
  • Djadouni, H., Trouzine, H., Gomes Correia, A., and Miranda, T. F. D. S., 2019. 2D numerical analysis of a cantilever retaining wall backfilled with sand–tire chips mixtures. European Journal of Environmental and Civil Engineering, 1–17. doi:10.1080/19648189.2019.1570870.
  • Ealding, W. 1992. Final report on leachable metals in scrap tires.
  • Esfandiari, J. and Selamat, M., 2012. Laboratory investigation on the effect of transverse member on pull out capacity of metal strip reinforcement in sand. Geotextiles and Geomembranes, 35, 41–49. doi:10.1016/j.geotexmem.2012.07.002
  • Ferreira, F.B., Vieira, C. S., Lopes, M. L., and Carlos, D. M., 2016. Experimental investigation on the pullout behaviour of geosynthetics embedded in a granite residual soil. European Journal of Environmental and Civil Engineering, 20 (9), 1147–1180. doi:10.1080/19648189.2015.1090927.
  • Ghazavi, M. and Sakhi, M.A., 2005. Influence of optimized tire shreds on shear strength parameters of sand. International Journal of Geomechanics, 5 (1), 58–65. doi:10.1061/(ASCE)1532-3641(2005)5:1(58).
  • Gurung, N. and Iwao, Y., 1999. Comparative model Study of geosynthetic pull-out response. Geosynthetics International, 6 (1), 53–68. doi:10.1680/gein.6.0143.
  • Harsch, M., Karger-Kocsis, J., and Holst, M., 2007. Influence of fillers and additives on the cure kinetics of an epoxy/anhydride resin. European Polymer Journal, 43 (4), 1168–1178. doi:10.1016/j.eurpolymj.2007.01.025.
  • Hidalgo, C.A. and Bustamante-Hernández, J.J., 2020. A new sustainable geotechnical reinforcement system from old tires: experimental evaluation by pullout tests. Sustainability, 12 (11), 4582. doi:10.3390/su12114582.
  • Horpibulsuk, S. and Niramitkornburee, A., 2010. Pullout resistance of bearing reinforcement embedded in sand. Soils and Foundations, 50 (2), 215–226. doi:10.3208/sandf.50.215.
  • Humphrey, D. and Katz, L., 2000. Water-quality effects of tire shreds placed above the water table: five-year field study. Transportation Research Record: Journal of the Transportation Research Board, 1714 (1), 18–24. doi:10.3141/1714-03.
  • Indraratna, B., Sun, Q., and Grant, J., 2017. Behaviour of subballast reinforced with used tyre and potential application in rail tracks. Transportation Geotechnics, 12, 26–36. doi:10.1016/j.trgeo.2017.08.006
  • Jewell, R., Milligan, G., Sarsby, R.W. and Dubois, D., 1985. Interaction between soil and geogrids. Polymer grid reinforcement: proceedings of a conference sponsored by the science and engineering research council and netlon ltd and held in london 22–23 march 1984.
  • Kaushik, M.K., Kumar, A., and Bansal, A., 2018. Performance of tire chips–gravel combinations with nonwoven geotextile and encapsulated tire chips layers used as filter/separator under incremental stress levels. European Journal of Environmental and Civil Engineering, 22 (11), 1291–1324. doi:10.1080/19648189.2016.1262281.
  • Kayadelen, C., Önal, T.Ö. and Altay, G., 2017. Experimental study on pull-out response of geogrid embedded in sand. Measurement, 117 (1), 390–396
  • Khedkar, M. and Mandal, J., 2009. Pullout behaviour of cellular reinforcements. Geotextiles and Geomembranes, 27 (4), 262–271. doi:10.1016/j.geotexmem.2008.12.003.
  • Lajevardi, S.H., Dias, D., and Racinais, J., 2013. Analysis of soil-welded steel mesh reinforcement interface interaction by pull-out tests. Geotextiles and Geomembranes, 40, 48–57. doi:10.1016/j.geotexmem.2013.08.002
  • Li, L., et al., 2018. Experimental investigations on the mechanically stabilised earth wall under static load conditions. European Journal of Environmental and Civil Engineering, 1–24. doi:10.1080/19648189.2018.1537898.
  • Ling, H.I., et al., 2012. Earthquake response of reinforced segmental retaining walls backfilled with substantial percentage of fines. Journal of Geotechnical and Geoenvironmental Engineering, 138 (8), 934–944. doi:10.1061/(ASCE)GT.1943-5606.0000669.
  • Lopes, M.J. and Lopes, M.L., 1999. Soil-geosynthetic interaction - influence of soil particle size and geosynthetic structure. Geosynthetics International, 6 (4), 261–282. doi:10.1680/gein.6.0153.
  • Mohan, V.K.D., et al., 2016. Pullout capacity of ladder-type metal reinforcements in tire shred-sand mixtures. Construction and Building Materials, 113, 544–552. doi:10.1016/j.conbuildmat.2016.02.160
  • Moraci, N. and Gioffrè, D., 2006. A simple method to evaluate the pullout resistance of extruded geogrids embedded in a compacted granular soil. Geotextiles and Geomembranes, 24 (2), 116–128. doi:10.1016/j.geotexmem.2005.11.001.
  • Moraci, N. and Recalcati, P., 2006. Factors affecting the pullout behaviour of extruded geogrids embedded in a compacted granular soil. Geotextiles and Geomembranes, 24 (4), 220–242. doi:10.1016/j.geotexmem.2006.03.001.
  • Mosallanezhad, M., et al., 2016a. Performance of the new reinforcement system in the increase of shear strength of typical geogrid interface with soil. Geotextiles and Geomembranes, 44 (3), 457–462. doi:10.1016/j.geotexmem.2015.07.005.
  • Mosallanezhad, M., et al., 2016b. Experimental and numerical studies of the performance of the new reinforcement system under pull-out conditions. Geotextiles and Geomembranes, 44 (1), 70–80. doi:10.1016/j.geotexmem.2015.07.006.
  • Mosallanezhad, M., Bazyar, M.H., and Saboor, M.H., 2015. Novel strip-anchor for pull-out resistance in cohesionless soils. Measurement, 62, 187–196. doi:10.1016/j.measurement.2014.10.046
  • Palmeira, E.M., 2004. Bearing force mobilisation in pull-out tests on geogrids. Geotextiles and Geomembranes, 22 (6), 481–509. doi:10.1016/j.geotexmem.2004.03.007.
  • Palmeira, E.M., 2009. Soil–geosynthetic interaction: modelling and analysis. Geotextiles and Geomembranes, 27 (5), 368–390. doi:10.1016/j.geotexmem.2009.03.003.
  • Palmeria, E. and Milligan, G., 1989. Scale and other factors affecting the results of pull-out tests of grids buried in sand. Geotechnique, 39 (3), 511–542. doi:10.1680/geot.1989.39.3.511.
  • Park, J.B., Kim, D., Yang, S.B. and Kim, J.H., 2017. Pullout Characteristics of geosynthetics reinforced earth using multilayer spreading pullout test. Advances in Materials Science and Engineering, 2017, 9485826, https://doi.org/10.1155/2017/9485826
  • Peterson, L.M. and Anderson, L.R., 1980. Pullout resistance of welded wire mesh embeded in soil. Utah State University: Report to the Hilfiker Company.
  • Popovici, A., et al., 2015. Modern mortars with electronic waste scraps (glass and plastic). Mater Plast, 52 (4), 588–592.
  • Reddy, K. and Saichek, R. 1998. Characterization and performance assessment of shredded scrap tires as leachate drainage material in landfills. In: Paper presented at the Proceedings of the fourteenth international conference on Solid Waste Technology and Management. Philadelphia, PA.
  • SadatTaghavi, S.H. and Mosallanezhad, M., 2017. Experimental analysis of large-scale pullout tests conducted on polyester anchored geogrid reinforcement systems. Canadian Geotechnical Journal, 54 (5), 621–630. doi:10.1139/cgj-2016-0365.
  • Senetakis, K. and Anastasiadis, A., 2015. Effects of state of test sample, specimen geometry and sample preparation on dynamic properties of rubber–sand mixtures. Geosynthetics International, 22 (4), 301–310. doi:10.1680/gein.15.00013.
  • Shrestha, S., et al., 2016. Design and analysis of retaining wall backfilled with shredded tire and subjected to earthquake shaking. Soil Dynamics and Earthquake Engineering, 90, 227–239. doi:10.1016/j.soildyn.2016.08.034
  • Suksiripattanapong, C., et al., 2013. Pullout resistance of bearing reinforcement embedded in coarse-grained soils. Geotextiles and Geomembranes, 36, 44–54. doi:10.1016/j.geotexmem.2012.10.008
  • Tajabadipour, M., et al., 2019. Laboratory pullout investigation for evaluate feasibility use of scrap tire as reinforcement element in mechanically stabilized earth walls. Journal of Cleaner Production, 237, 117726. doi:10.1016/j.jclepro.2019.117726
  • Tajabadipour, M. and Marandi, M., 2017. Effect of rubber tire chips-sand mixtures on performance of geosynthetic reinforced earth walls. Periodica Polytechnica Civil Engineering, 61 (2), 322–334. doi:10.3311/PPci.9539.
  • Thomas, B.S., Gupta, R.C., and Panicker, V.J., 2016. Recycling of waste tire rubber as aggregate in concrete: durability-related performance. Journal of Cleaner Production, 112, 504–513. doi:10.1016/j.jclepro.2015.08.046
  • Tsang, H.H., 2008. Seismic isolation by rubber–soil mixtures for developing countries. Earthquake Engineering & Structural Dynamics, 37 (2), 283–303. doi:10.1002/eqe.756.
  • Udomchai, A., et al., 2017. Performance of the bearing reinforcement earth wall as a retaining structure in the Mae Moh mine, Thailand. Geotextiles and Geomembranes, 45 (4), 350–360. doi:10.1016/j.geotexmem.2017.04.007.
  • Wang, K., et al., 2019. Thermo-chemical conversion of scrap tire waste to produce gasoline fuel. Waste Management, 86, 1–12. doi:10.1016/j.wasman.2019.01.024
  • Xu, P., Hatami, K., and Jiang, G., 2020a. Seismic rotational stability analysis of reinforced soil retaining walls. Computers and Geotechnics, 118, 103297. doi:10.1016/j.compgeo.2019.103297
  • Xu, P., Hatami, K., and Jiang, G., 2020b. Study on seismic stability and performance of reinforced soil walls using shaking table tests. Geotextiles and Geomembranes, 48 (1), 82–97. doi:10.1016/j.geotexmem.2019.103507.
  • Yoon, S., et al., 2006. Construction of a test embankment using a sand–tire shred mixture as fill material. Waste Management, 26 (9), 1033–1044. doi:10.1016/j.wasman.2005.10.009.
  • Yoon, Y.W., Cheon, S.H., and Kang, D.S., 2004. Bearing capacity and settlement of tire-reinforced sands. Geotextiles and Geomembranes, 22 (5), 439–453. doi:10.1016/j.geotexmem.2003.12.002.
  • Zang, G., et al., 2019. Modeling and economic analysis of waste tire gasification in fluidized and fixed bed gasifiers. Waste Management, 89, 201–211. doi:10.1016/j.wasman.2019.03.070
  • Zhang, S.L., et al., 2010. Prediction of mechanical properties of waste polypropylene/waste ground rubber tire powder blends using artificial neural networks. Materials & Design, 31 (8), 3624–3629. doi:10.1016/j.matdes.2010.02.039.
  • Zhou, X., et al., 2015. Usage of slurry oil for the preparation of crumb-rubber-modified asphalt emulsions. Construction and Building Materials, 76, 279–285. doi:10.1016/j.conbuildmat.2014.11.064
  • Zornberg, J.G., Cabral, A.R., and Viratjandr, C., 2004. Behaviour of tire shred sand mixtures. Canadian Geotechnical Journal, 41 (2), 227–241. doi:10.1139/t03-086.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.