187
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Influence of erodible layer on granular column collapse using discrete element analysis

, , &
Pages 1123-1135 | Received 26 Jan 2020, Accepted 07 May 2021, Published online: 08 Jun 2021

References

  • Ayachit, U., (2015). The ParaView Guide: a Parallel Visualization Application. Kitware.
  • Bouchut, F., et al., 2008. On new erosion models of Savage–Hutter type for avalanches. Acta Mechanica, 199 (1–4), 181–208. doi:10.1007/s00707-007-0534-9
  • Chen, H., Crosta, G. B., and Lee, C. F., 2006. Erosional effects on runout of fast landslides, debris flows and avalanches: a numerical investigation. Géotechnique, 56 (5), 305–322.
  • Cleary, P. W., and Campbell, C. S., 1993. Self-lubrication for long runout landslides: examination by computer simulation. Journal of Geophysical Research: Solid Earth, 98 (B12), 21911–21924.
  • Cleary, P.W. and Frank, M. (2006), ‘Three-Dimensional Discrete Element Simulation of Axisymmetric Collapses of Granular Columns’, 89–111.
  • Cleary, P.W. and Prakash, M., 2004. Discrete–element modelling and smoothed particle hydrodynamics: potential in the environmental sciences. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 362 (1822), 2003–2030. doi:10.1098/rsta.2004.1428
  • Crosta, G.B., Imposimato, S., and Roddeman, D., 2009. Numerical modeling of 2-D granular step collapse on erodible and nonerodible surface. Journal of Geophysical Research: Earth Surface, 114 (F3), F3. doi:10.1029/2008JF001186
  • Cundall, P.A. and Strack, O.D., 1979. A discrete numerical model for granular assemblies. Géotechnique, 29 (1), 47–65. doi:10.1680/geot.1979.29.1.47
  • Delannay, R., et al., 2017. Granular and particle-laden flows: from laboratory experiments to field observations, J. Journal of Physics D: Applied Physics, 50 (5), 40pp. doi:10.1088/1361-6463/50/5/053001
  • Ding, W.-T. and Xu, W.-J., 2018. Study on the multiphase fluid-solid interaction in granular materials based on an LBM-DEM coupled method. Powder Technology, 335, 301–314. doi:10.1016/j.powtec.2018.05.006.
  • Donea, J., Giuliani, S., and Halleux, J.P., 1982. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Computer Methods in Applied Mechanics and Engineering, 33 (1–3), 689–723. doi:10.1016/0045-7825(82)90128-1
  • Egashira, S., Honda, N., and Itoh, T., 2001. Experimental study on the entrainment of bed material into debris flow. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science, 26 (9), 645–650.
  • Farin, M., Mangeney, A., and Roche, O., 2014. Fundamental changes of granular flow dynamics, deposition, and erosion processes at high slope angles: insights from laboratory experiments. Journal of Geophysical Research: Earth Surface, 119 (3), 504–532. doi:10.1002/2013JF002750
  • Fernandez-Nieto, E.D., et al., 2016. A multilayer shallow model for dry granular flows with the -rheology: application to granular collapse on erodible beds. Journal of Fluid Mechanics, 798, 643–681. doi:10.1017/jfm.2016.333
  • Giroami, L., Hergault, V., Vinay, G., and Wachs, A., 2012. A three-dimensional discrete-grain model for the simulation of dam-break rectangular collapses: comparison between numerical results and experiments. Granular Matter, 14 (3), 381–92. doi:10.1007/s10035-012-0342-3
  • Hertz, H., 1882. Über die Berührung fester elastischerKörper (on the contact of elastic solids). Journal ReineAngewandte of Mathematics, 94, 156–171.
  • Hungr, O., et al., 2002. A review of the classification of landslides of the flow type. Environmental and Engineering Geoscience, vol 7 (pg), 225, 2001.
  • Hutter, K., et al., 1995. The Dynamics of Avalanches of Granular Materials from Initiation to Runout. Part II. Experiments. ActaMechanica, 109 (1–4), 127–165.
  • Ionescu, I., et al., 2015. Viscoplastic modeling of granular column collapse with pressure-dependent rheology. Journal of Non-Newtonian Fluid Mechanics, 219, 1–18. doi:10.1016/j.jnnfm.2015.02.006
  • Iverson, R.M., et al., 2011. Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nature Geoscience, 4 (2), 116–121. doi:10.1038/ngeo1040
  • Iverson, R.M., 2012. Elementary theory of bed-sediment entrainment by debris flows and avalanches. Journal of Geophysical Research, 117 (F3), F03006. doi:10.1029/2011JF002189.
  • Iverson, R.M. and Ouyang, C.J., 2015. Entrainment of bed material by Earth-surface mass flows: review and reformulation of depth-integrated theory. Reviews of Geophysics, 53. doi:10.1002/2013RG000447.
  • Iverson, R.M., Reid, M.E., and Lahusen, R.G. (1997). Debris-Flow Mobilization. 85–138.
  • Jaeger, H.M. and Nagel, S.R., 1992. Physics of the Granular State. Science, 255 (5051), 1523. doi:10.1126/science.255.5051.1523
  • Jaeger, H.M., Nagel, S.R., and Behringer, R.P., 1996. Granular Solids, Liquids, and Gases. Reviews of Modern Physics, 68 (4), 1259–1273. doi:10.1103/RevModPhys.68.1259
  • Kadanoff, L.P., 1999. Built upon Sand: theoretical Ideas Inspired by Granular Flows. Reviews of Modern Physics, 71 (1), 435–444. doi:10.1103/RevModPhys.71.435
  • Kerswell, R., 2005. Dam break with coulomb friction: a model for granular slumping? Physics of Fluids, 17, 057101.
  • Lacaze, L., Phillips, J.C., and Kerswell, R.R., 2008. Planar collapse of a granular column: experiments and discrete element simulations. Physics of Fluids, 20 (6), 063302. doi:10.1063/1.2929375
  • Lagree, P.-Y., Staron, L., and Popinet, S., 2011. The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a μ(I)-rheology. journal of Fluid Mechanics, 686, 378–408. doi:10.1017/jfm.2011.335
  • Lajeunesse, E., Monnier, J.B., and Homsy, G.M., 2005. Granular Slumping on a Horizontal Surface. Physics of Fluids, 17 (10), 1–16. doi:10.1063/1.2087687
  • Li, S. and Liu, W.K., 2002. Meshfree and Particle Methods and Their Applications. Applied Mechanics Reviews, 55 (1), 1–34. doi:10.1115/1.1431547
  • LIGGGHTS (2016) Gran model hertz model. DCS Computing GmbH, JKU Linz and Sandia Corporation. Retrieved from https://www.cfdem.com/media/DEM/docu/gran_model_hertz.html
  • Lube, G., et al., 2005. Collapses of Two-Dimensional Granular Columns. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 72 (4), 4. doi:10.1103/PhysRevE.72.041301
  • Lusso, C., et al., 2017. Two-dimensional simulation by regularization of free surface viscoplastic flows with Drucker–Prager yield stress and application to granular collapse. Journal of Computational Physics, 333, 387–408. doi:10.1016/j.jcp.2016.12.036
  • Mangeney, A., et al., 2010. Erosion and mobility in granular collapse over sloping beds. Journal of Geophysical Research, 115 (F3), F03040. doi:10.1029/2009JF001462.
  • Mangeney-Castelnau, A., Bouchut, F., Vilotte, J. P., Lajeunesse, E., Aubertin, A., and Marina, P., 2005. On the use of saint venant equations to simulate the spreading of a granular mass. Journal of Geophysical Research: Solid Earth, 110 (9), 1–17. doi:10.1029/2004JB003161
  • Martin, N., et al., 2017. Continuum viscoplastic simulation of a granular column collapse on large slopes: μ(I) rheology and lateral wall effects. Physics of Fluids, 29 (1), 013301. doi:10.1063/1.4971320
  • Mehta, A. and Barker, G.C., 1994. The Dynamics of Sand. Reports on Progress in Physics, 57 (4), 383–416. doi:10.1088/0034-4885/57/4/002
  • Mindlin, R.D. and Deresiewicz, H., 1953. Elastic Spheres in Contact under Varying Oblique Force. Transactions of the ASME, Journal of Applied Mechanics, 20, 327–344.
  • O-’Sullivan. (2012). Particulate_Discrete_Elemen(z-Lib.Org).Pdf.
  • Padros, C.B. (2014). Master of Science Thesis Discrete Element Simulations with LIGGGHTS Declaration of Authorship.
  • Rickenmann, D., Weber, D., and Stepanov, B., 2003. Erosion by debris flows in field and laboratory experiments. In:international conference ondebris-flow hazards mitigation: mechanics, prediction, and assessment, proceedings 2.Rotterdam: Millpress, 883–94.
  • Savage, S.B. and Hutter, K., 1989. The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics, 199, 177–215. doi:10.1017/S0022112089000340
  • Shi, B., Zhang, Y., and Zhang, W., 2018. Analysis of the Entire Failure Process of the Rotational Slide Using the Material Point Method. International Journal of Geomechanics, 18 (8), 04018092. doi:10.1061/(ASCE)GM.1943-5622.0001211
  • Sovilla, B., Burlando, P., and Bartelt, P., 2006. Field Experiments and Numerical Modeling of Mass Entrainment in Snow Avalanches. Journal of Geophysical Research: Earth Surface, 111 (F3), 1–16. doi:10.1029/2005JF000391
  • Staron, L., and Hinch, E., 2007. The spreading of a granular mass: role of grain properties and initial conditions. Granular Matter, 9 (3–4), 205–217.
  • Staron, L. and Hinch, E.J., 2005. Study of the collapse of granular columns using two-dimensional discrete-grain simulation. Journal of Fluid Mechanics, 545 (1), 1–27. doi:10.1017/S0022112005006415
  • Tang, C.-L., et al., 2009. The Tsaoling Landslide Triggered by the Chi-Chi Earthquake, Taiwan: insights from a Discrete Element Simulation. Engineering Geology, 106 (1–2), 1–19. doi:10.1016/j.enggeo.2009.02.011.
  • Thornton, C. and Antony, S.J., 2000. Quasi-static shear deformation of a soft particle system. Powder Technology, 109 (1–3), 179–191. doi:10.1016/S0032-5910(99)00235-1
  • Utili, S., Zhao, T., and Houlsby, G.T., 2015. 3D DEM Investigation of Granular Column Collapse: evaluation of Debris Motion and Its Destructive Power. Engineering Geology, 186, 3–16. doi:10.1016/j.enggeo.2014.08.018.
  • Yang, G. and Wang, X., 2012. Discrete Element Modeling for Granular Materials Calculation Algorithm. Ejge, 17, 2463–2474.
  • Zenit, R., 2005. Computer simulations of the collapse of a granular column. Physics of Fluids, 17 (3), 031703. doi:10.1063/1.1862240
  • Zhang, Y. and Campbell, C.S., 1992. The interface between fluid-like and solid-like behaviour in two-dimensional granular flows. Journal of Fluid Mechanics, 237, 541–568. doi:10.1017/S0022112092003525
  • Zhao, T., 2014. Investigation of landslide-induced debris flows by the DEM and CFD. Thesis (PhD). Oxford University.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.