348
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A modified subloading Cam-clay model for granular soils subjected to suffusion

ORCID Icon & ORCID Icon
Pages 1294-1308 | Received 29 Aug 2020, Accepted 07 May 2021, Published online: 28 May 2021

References

  • Al-Khafaji, A.W.N. and Andersland, O.B., 1992. Equations for compression index approximation. Journal of Geotechnical Engineering, 118 (1), 148–153. doi:10.1061/(ASCE)0733-9410(1992)118:1(148).
  • Andrianatrehina, N.L., et al., 2016. Influence of the percentage of sand on the behavior of gap-graded cohesionless soils. Comptes Rendus Mecanique, 344 (8), 539–546. doi:10.1016/j.crme.2016.03.001.
  • Benahmed, N., et al., 2015. An experimental investigation into the effects of low plastic fines content on the behaviour of sand/silt mixtures. European Journal of Environmental and Civil Engineering, 19 (1), 109–128. doi:10.1080/19648189.2014.939304.
  • Cabalar, A.F., 2011. The effects of fines on the behaviour of a sand mixture. Geotechnical and Geological Engineering, 29 (1), 91–100. doi:10.1007/s10706-010-9355-z.
  • Carraro, J.A.H., Prezzi, M., and Salgado, R., 2009. Shear strength and stiffness of sands containing plastic or nonplastic fines. Journal of Geotechnical and Geoenvironmental Engineering, 135 (9), 1167–1178. doi:10.1061/(ASCE)1090-0241(2009)135:9(1167).
  • Chang, C.S. and Yin, Z.Y., 2011. Micromechanical modeling for behavior of silty sand with influence of fine content. International Journal of Solids and Structures, 48 (19), 2655–2667. doi:10.1016/j.ijsolstr.2011.05.014.
  • Chang, D.S. and Zhang, L.M., 2011. A stress-controlled erosion apparatus for studying internal erosion in soils. Geotechnical Testing Journal, 34 (6), 579–589. doi:10.1520/GTJ103889.
  • Chen, C., Zhang, L.M., and Chang, D.S., 2016. Stress-strain behavior of granular soils subjected to internal erosion. Journal of Geotechnical and Geoenvironmental Engineering, 142 (12), 06016014. doi:10.1061/(ASCE)GT.1943-5606.0001561.
  • Chen, C., Zhang, L.M., and Zhu, H., 2017. A photographic method for measuring soil deformations during internal erosion under triaxial stress conditions. Geotechnical Testing Journal, 41 (1), 43–54. doi:10.1520/GTJ20170031.
  • Crosta, G. and Prisco, C.D., 1999. On slope instability induced by seepage erosion. Canadian Geotechnical Journal, 36 (6), 1056–1073. doi:10.1139/t99-062.
  • Fannin, R.J. and Slangen, P., 2014. On the distinct phenomena of suffusion and suffosion. Géotechnique Letters, 4 (4), 289–294. doi:10.1680/geolett.14.00051.
  • Foster, M., Fell, R., and Spannagle, M., 2000. The statistics of embankment dam failures and accidents. Canadian Geotechnical Journal, 37 (5), 1000–1024. doi:10.1139/t00-030.
  • Gai, X. and Sánchez, M., 2019. An elastoplastic mechanical constitutive model for microbially mediated cemented soils. Acta Geotechnica, 14 (3), 709–726. doi:10.1007/s11440-018-0721-y.
  • Habibbeygi, F., Nikraz, H., and Verheyde, F., 2017. Determination of the compression index of reconstituted clays using intrinsic concept and normalized void ratio. International Journal of GEOMATE, 13 (39), 54–60. doi:10.21660/2017.39.98271.
  • Hashiguchi, K., 1989. Subloading surface model in unconventional plasticity. International Journal of Solids and Structures, 25 (8), 917–945. doi:10.1016/0020-7683(89)90038-3.
  • Hicher, P.Y., 2013. Modelling the impact of particle removal on granular material behaviour. Geotechnique, 63 (2), 118–128. doi:10.1680/geot.11.P.020.
  • Hosn, R.A., et al. 2016. A discrete numerical description of the mechanical response of soils subjected to degradation by suffusion. In Scour and Erosion: Proceedings of the 8th International Conference on Scour and Erosion, September 12-15, Oxford, UK, CRC Press.
  • Hu, W., et al., 2018. Seismic precursor to instability induced by internal erosion in loose granular slopes. Géotechnique, 68 (11), 989–1001. doi:10.1680/jgeot.17.P.079.
  • Hu, Z., Zhang, Y., and Yang, Z., 2020. Suffusion-induced evolution of mechanical and microstructural properties of gap-graded soils using CFD-DEM. Journal of Geotechnical and Geoenvironmental Engineering, 146 (5), 04020024. doi:10.1061/(ASCE)GT.1943-5606.0002245.
  • Hunter, R.P. and Bowman, E.T., 2018. Visualisation of seepage-induced suffusion and suffosion within internally erodible granular media. Géotechnique, 68 (10), 918–930. doi:10.1680/jgeot.17.P.161.
  • Ke, L. and Takahashi, A., 2014. Experimental investigations on suffusion characteristics and its mechanical consequences on saturated cohesionless soil. Soils and Foundations, 54 (4), 713–730. doi:10.1016/j.sandf.2014.06.024.
  • Ke, L. and Takahashi, A., 2015. Drained monotonic responses of suffusional cohesionless soils. Journal of Geotechnical & Geoenvironmental Engineering, 141 (8), 4015033. doi:10.1061/(ASCE)GT.1943-5606.0001327.
  • Li, S., Russell, A., and Wood, D.M., 2020. The influence of particle size distribution homogeneity on the shearing of soils having been subjected to internal erosion. Canadian Geotechnical Journal, 57 (11), 1684–1694. doi:10.1139/cgj-2019-0273.
  • Li, S., Russell, A.R., and Wood, D.M. 2017. Stress-strain behavior of soils having undergone different amounts of internal erosion. In Proceedings of 25th Meeting of European Working Group on Internal Erosion in Embankment Dams & their Foundations, 114–122. September 4-7, Delft, Netherlands.
  • Li, X.S. and Dafalias, Y.F., 2000. Dilatancy for cohesionless soils. Géotechnique, 50 (4), 449–460. doi:10.1680/geot.2000.50.4.449.
  • Mahmoudi, Y., et al., 2018. Laboratory study on undrained shear behaviour of overconsolidated sand–silt mixtures: effect of the fines content and stress state. International Journal of Geotechnical Engineering, 12 (2), 118–132. doi:10.1080/19386362.2016.1252140.
  • Mehdizadeh, A., et al., 2017. Progressive internal erosion in a gap-graded internally unstable soil: mechanical and geometrical effects. International Journal of Geomechanics, 18 (3), 04017160. doi:10.1061/(ASCE)GM.1943-5622.0001085.
  • Muir Wood, D., Maeda, K., and Nukudani, E., 2010. Modelling mechanical consequences of erosion. Géotechnique, 60 (6), 447–457. doi:10.1680/geot.2010.60.6.447.
  • Nakai, T. and Hinokio, M., 2004. A simple elastoplastic model for normally and over consolidated soils with unified material parameters. Soils and Foundations, 44 (2), 53–70. doi:10.3208/sandf.44.2_53.
  • Nguyen, C.D., et al., 2019. Experimental investigation of microstructural changes in soils eroded by suffusion using X-ray tomography. Acta Geotechnica, 14 (3), 749–765. doi:10.1007/s11440-019-00787-w.
  • Nguyen, H.B.K., Rahman, M.M., and Fourie, A.B., 2018. Characteristic behavior of drained and undrained triaxial compression tests: DEM study. Journal of Geotechnical and Geoenvironmental Engineering, 144 (9), 04018060. doi:10.1061/(ASCE)GT.1943-5606.0001940.
  • Ouyang, M. and Takahashi, A., 2015. Influence of initial fines content on fabric of soils subjected to internal erosion. Canadian Geotechnical Journal, 53 (2), 299–313. doi:10.1139/cgj-2014-0344.
  • Park, H.I. and Lee, S.R., 2011. Evaluation of the compression index of soils using an artificial neural network. Computers and Geotechnics, 38 (4), 472–481. doi:10.1016/j.compgeo.2011.02.011.
  • Park, J.H. and Koumoto, T., 2004. New compression index equation. Journal of Geotechnical and Geoenvironmental Engineering, 130 (2), 223–226. doi:10.1061/(ASCE)1090-0241(2004)130:2(223).
  • Richards, K.S. and Reddy, K.R., 2010. True triaxial piping test apparatus for evaluation of piping potential in earth structures. Geotechnical Testing Journal, 33 (1), 83–95. doi:10.1520/GTJ102246.
  • Richart, F.E., Jr., Hall, J.R., and Woods, R.D., 1970. Vibrations of soils and foundations. Englewood Cliffs, NJ: Prentice-Hall.
  • Rousseau, Q., et al., 2018. Constitutive modeling of a suffusive soil with porosity-dependent plasticity. In: S. Bonelli, C. Jommi, and D. Sterpi, eds. Internal erosion in Earthdams, Dikes and Levees. EWG-IE 2018. lecture notes in civil engineering. Vol. 17. Springer, Cham, Switzerland. doi:10.1007/978-3-319-99423-9_16.
  • Rousseau, Q., et al., 2020. Modelling the poroelastoplastic behaviour of soils subjected to internal erosion by suffusion. International Journal for Numerical and Analytical Methods in Geomechanics, 44 (1), 11–136. doi:10.1002/nag.3014.
  • Salgado, R., Bandini, P., and Karim, A., 2000. Shear strength and stiffness of silty sand. Journal of Geotechnical and Geoenvironmental Engineering, 126 (5), 451–462. doi:10.1061/(ASCE)1090-0241(2000)126:5(451).
  • Seed, B. and Lee, K.L., 1966. Liquefaction of saturated sands during cyclic loading. Journal of Soil Mechanics & Foundations Div, 92 (6), 105–134. doi:10.1061/JSFEAQ.0000913.
  • Shibata, T., 1963. On the volume changes of normally consolidated clays. Journal of the Society of Materials Science. Annuals, Disaster Prevention Research Institute, Kyoto University, 6, 128–134. (in Japanese)
  • Tiwari, B. and Ajmera, B., 2012. New correlation equations for compression index of remolded clays. Journal of Geotechnical and Geoenvironmental Engineering, 138 (6), 757–762. doi:10.1061/(ASCE)GT.1943-5606.0000639.
  • Wang, G., Horikoshi, K., and Takahashi, A., 2020. Effects of internal erosion on parameters of subloading Cam-clay model. Geotechnical and Geological Engineering, 38 (2), 1323–1335. doi:10.1007/s10706-019-01093-8.
  • Wang, X. and Li, J., 2015. On the degradation of granular materials due to internal erosion. Acta Mechanica Sinica, 31 (5), 685–697. doi:10.1007/s10409-015-0466-x.
  • Wichtmann, T., Hernández, M.N., and Triantafyllidis, T., 2015. On the influence of a non-cohesive fines content on small strain stiffness, modulus degradation and damping of quartz sand. Soil Dynamics and Earthquake Engineering, 69, 103–114. doi:10.1016/j.soildyn.2014.10.017
  • Wilson, G.V., et al., 2018. Sediment detachment and transport processes associated with internal erosion of soil pipes. Earth Surface Processes and Landforms, 43 (1), 45–63. doi:10.1002/esp.4147.
  • Xiao, M. and Shwiyhat, N., 2012. Experimental investigation of the effects of suffusion on physical and geomechanic characteristics of sandy soils. Geotechnical Testing Journal, 35 (6), 890–900. doi:10.1520/GTJ104594.
  • Xiao, Y., et al., 2017. Strength–dilatancy relation of sand containing non-plastic fines. Géotechnique Letters, 7 (2), 204–210. doi:10.1680/jgele.16.00144.
  • Yang, J., et al., 2019. Internal erosion in dike‐on‐foundation modeled by a coupled hydromechanical approach. International Journal for Numerical and Analytical Methods in Geomechanics, 43 (3), 663–683. doi:10.1002/nag.2877.
  • Yang, J., et al., 2020. Hydromechanical modeling of granular soils considering internal erosion. Canadian Geotechnical Journal, 57 (2), 157–172. doi:10.1139/cgj-2018-0653.
  • Zhang, F., et al., 2019. Three-dimensional DEM modeling of the stress–strain behavior for the gap-graded soils subjected to internal erosion. Acta Geotechnica, 14 (2), 487–503. doi:10.1007/s11440-018-0655-4.
  • Zhang, S., et al., 2012. A simple thermo-elastoplastic model for geomaterials. International Journal of Plasticity, 34, 93–113. doi:10.1016/j.ijplas.2012.01.011
  • Zhang, Y. and Chen, Y., 2017. A constitutive relationship for gravelly soil considering fine particle suffusion. Materials, 10 (10), 1217. doi:10.3390/ma10101217.
  • Zhuang, J., et al., 2021. The internal erosion process and effects of undisturbed loess due to water infiltration. Landslides, 18 (2), 629–638. doi:10.1007/s10346-020-01518-z.
  • Zuo, L. and Baudet, B.A., 2015. Determination of the transitional fines content of sand-non plastic fines mixtures. Soils and Foundations, 55 (1), 213–219. doi:10.1016/j.sandf.2014.12.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.