169
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Reinforcement strength and length requirement of each layer in a nailed slope subjected to seismic loading

, &
Pages 1320-1337 | Received 05 Mar 2021, Accepted 07 May 2021, Published online: 21 Jun 2021

References

  • Anthoine, A., 1990. Une méthode pour le dimensionnement à la rupture des ouvrages en sols renforcés. Revue Française de Géotechnique, 50, 5–21. doi:10.1051/geotech/1990050005
  • Ausilio, E., Conte, E., and Dente, G., 2000. Seismic stability analysis of reinforced slopes. Soil Dynamics and Earthquake Engineering, 19 (3), 159–172. doi:10.1016/S0267-7261(00)00005-1
  • Bellezza, I., 2014. A new pseudo-dynamic approach for seismic active soil thrust. Geotechnical and Geological Engineering, 32 (2), 561–576. doi:10.1007/s10706-014-9734-y
  • Bellezza, I., 2015. Seismic active earth pressure on walls using a new pseudo-dynamic approach. Geotechnical and Geological Engineering, 33 (4), 795–812. doi:10.1007/s10706-015-9860-1
  • Briddle, R.J., 1989. Soil nailing - analysis and design. Ground Engineering, 22 (6), 52–56.
  • British Standards Institution(BSI), 2011. BS 8006-2:2011, Code of practice for strengthened/reinforced soils: Part 2 : soil nail design. London, UK: British Standards Institution.
  • Choudhury, D. and Nimbalkar, S.S., 2006. Pseudo-dynamic approach of seismic active earth pressure behind retaining wall. Geotechnical and Geological Engineering, 24 (5), 1103–1113. doi:10.1007/s10706-005-1134-x
  • Choudhury, D. and Nimbalkar, S.S., 2008. Seismic rotational displacement of gravity walls by pseudodynamic method. International Journal of Geomechanics, 8 (3), 169–175. doi:10.1061/(ASCE)1532-3641(2008)8
  • Ganesh, R., Khuntia, S., and Sahoo, J.P., 2018. Seismic uplift capacity of shallow strip anchors: a new pseudo-dynamic upper bound limit analysis. Soil Dynamics and Earthquake Engineering, 109 (September 2016), 69–75. doi:10.1016/j.soildyn.2018.03.004
  • GEO, 2017. Geoguide:Guide to soil nail design and construction. Hong Kong: Geotechnical Engineering Office Civil Engineering and Development Department, H.K.
  • Gosavi, M., Saran, S., and Mittal, S., 2009. Pseudo-static analysis of soil nailed excavations. Geotechnical and Geological Engineering, 27 (4), 571–583. doi:10.1007/s10706-009-9258-z
  • Hong, Y., et al., 2005. Shaking table tests and stability analysis of steep nailed slopes. Canadian Geotechnical Journal, 1279, 1264–1279. doi:10.1139/T05-055
  • Jewell, R.A. and Pedley, M.J., 1992. Analysis for soil reinforcement with bending stiffness. Journal of Geotechnical Engineering, 118 (10), 1505–1528.
  • Juran, B.I., et al., 1990. Klnematical limit analysis for design of soil-nailed structures. Journal of Geotechnical Engineering, 116 (1), 54–72.
  • Kokane, A.K., Sawant, V.A., and Sahoo, J.P., 2020. Seismic stability analysis of nailed vertical cut using modified pseudo-dynamic method. Soil Dynamics and Earthquake Engineering, 137 (August), 106294. doi:10.1016/j.soildyn.2020.106294
  • Kramer, S.L., (University of W.), 1996. Geotechnical earthquake engineering. Upper Saddle River, NJ: Prentice Hall.
  • Lasdon, L.S., et al., 1978. Design and testing of a generalized reduced gradient code for nonlinear programming. ACM Transactions on Mathematical Software (TOMS), 4 (1), 34–50. doi:10.1145/355769.355773
  • Lazarte, C.A., et al., 2015. Geotechnical engineering circular No.7-Soil nail walls reference manual. Washington, DC: U.S. Department of Transportation, Federal Highway Administration.
  • Lin, P., et al., 2017. Statistical analysis of the effective stress method and modifications for prediction of ultimate bond strength of soil nails. Acta Geotechnica, 12 (1), 171–182. doi:10.1007/s11440-016-0477-1
  • Lin, P., Liu, J., and Yuan, -X.-X., 2016. Reliability analysis of soil nail walls against external failures in layered ground. Journal of Geotechnical and Geoenvironmental Engineering, 143 (1), 04016077. doi:10.1061/(asce)gt.1943-5606.0001574
  • Ling, H.I., Leshchinsky, D., and Perry, E.B., 1997. Seismic design and performance of geosynthetic-reinforced soil structures. Geotechnique, 47 (5), 933–952. doi:10.1680/geot.1997.47.5.933
  • Michalowski, R.L., 1998. Soil reinforcement for seismic design of geotechnical structures. Computers and Geotechnics, 23 (1–2), 1–17. doi:10.1016/S0266-352X(98)00016-0
  • Nimbalkar, S.S. and Choudhury, D., 2008. Effects of Body Waves and Soil Amplification on Seismic Earth Pressures. Journal of Earthquake and Tsunami, 02 (1), 33–52. doi:10.1142/s1793431108000256
  • Nouri, H., Fakher, A., and Jones, C.J.F.P., 2006. Development of horizontal slice method for seismic stability analysis of reinforced slopes and walls. Geotextiles and Geomembranes, 24, 175–187. doi:10.1016/j.geotexmem.2005.11.004
  • Pain, A., Choudhury, D., and Bhattacharyya, S.K., 2017a. Seismic rotational stability of gravity retaining walls by modified pseudo-dynamic method. Soil Dynamics and Earthquake Engineering, 94 (February 2015), 244–253. doi:10.1016/j.soildyn.2017.01.016
  • Pain, A., Choudhury, D., and Bhattacharyya, S.K., 2017b. Effect of dynamic soil properties and frequency content of harmonic excitation on the internal stability of reinforced soil retaining structure. Geotextiles and Geomembranes, 45, 471–486. doi:10.1016/j.geotexmem.2017.07.003
  • Pak, A., et al., 2019. Numerical investigation of stability of deep excavations supported by soil-nailing method. Geomechanics and Geoengineering, 1–18. doi:10.1080/17486025.2019.1680878
  • Patra, C.R. and Basudhar, P.K., 2005. Optimum design of nailed soil slopes. Geotechnical and Geological Engineering, 23 (3), 273–296. doi:10.1007/s10706-004-2146-7
  • Presses de I’ENPC, 1991. Clouterre soil nailing recommendations-1991 for designing, calculating, constructing and inspecting earth support systems using soil nailing. Paris: Presses de I’ENPC.
  • Sarangi, P. and Ghosh, P., 2016. Seismic analysis of nailed vertical excavation using pseudo-dynamic approach. Earthquake Engineering and Engineering Vibration, 15 (4), 621–631. doi:10.1007/s11803-016-0353-x
  • Schlosser, F., 1983. Analogies et differences dans le comportement et le calcul des ouvrages de soutenement en terre armee et par clouage du sol. Annales de l’ITBTP, 473 (Oct), 8–23.
  • Sharma, M., et al., 2019a. Analysis of helical soil nailed walls under static and seismic conditions. Canadian Geotechnical Journal, 57 (6), 815–827. doi:10.1139/cgj-2019-0240
  • Sharma, M., Samanta, M., and Punetha, P., 2019b. Experimental investigation and modeling of pullout response of soil nails in cohesionless medium. International Journal of Geomechanics, 19 (3), 04019002. doi:10.1061/(asce)gm.1943-5622.0001372
  • Shen, C.K., et al., 1981. Field measurements of an earth support system. Journal of Geotechnical Engineering, 107 (12), 1625–1642.
  • Srikar, G. and Mittal, S., 2020. Seismic analysis of retaining wall subjected to surcharge: a modified pseudodynamic approach. International Journal of Geomechanics, 20 (9), 06020022. doi:10.1061/(asce)gm.1943-5622.0001780
  • Steedman, R.S. and Zeng, X., 1990. The influence of phase on the calculation of pseudo-static earth pressure on a retaining wall. Geotechnique, 40 (1), 103–112.
  • Tufenkjian, M.R. and Vucetic, M., 2000. Dynamic failure mechanism of soil-nailed excavation models in centrifuge. Journal of Geotechnical and Geoenvironmental Engineering, 126 (3), 227–235.
  • Villalobos, F.A., Villalobos, S.A., and Oróstegui, P.L., 2018. Observations from a parametric study of the seismic design of soil nailing. Proceedings of the Institution of Civil Engineers: Ground Improvement, 171 (2), 112–122. doi:10.1680/jgrim.17.00027
  • Wei, W.B. and Cheng, Y.M., 2010. Soil nailed slope by strength reduction and limit equilibrium methods. Computers and Geotechnics, 37 (5), 602–618. doi:10.1016/j.compgeo.2010.03.008
  • Yang, T., Zou, J.F., and Pan, Q.J., 2020. Three-dimensional seismic stability of slopes reinforced by soil nails. Computers and Geotechnics, 127 (February), 103768. doi:10.1016/j.compgeo.2020.103768
  • Zolqadr, E., Yasrobi, S.S., and Norouz Olyaei, M., 2016. Analysis of soil nail walls performance - Case study. Geomechanics and Geoengineering, 11 (1), 1–12. doi:10.1080/17486025.2015.1006263

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.