177
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Constitutive Model for Fibre Reinforced Cemented Silty Sand

, &
Pages 1388-1405 | Received 21 Dec 2020, Accepted 21 May 2021, Published online: 25 Jun 2021

References

  • Abdulla, A. and Kiousis, P., 1997. Behaviour of cemented sands I. Testing. International Journal of Numerical and Analytical Methods in Geomechanics, 21, 533–547. doi:10.1002/(SICI)1096-9853(199708)21:8<533::AID-NAG889>3.0.CO;2-0
  • Armaghani, D.J., et al., 2020. Indirect measure of shear strength parameters of fiber-reinforced sandy soil using laboratory tests and intelligent systems. Geomechanics and Engineering, 22 (5), 397–414. doi:10.12989/gae.2020.22.5.397
  • Bahrami, M. and Marandi, S.M., 2020. Effect of strain level on strength evaluation of date palm fiber-reinforced sand. Geomechanics and Engineering, 21 (4), 327–336. doi:10.12989/gae.2020.21.4.327
  • Been, K. and Jefferies, M.G., 1985. A state parameter for sands. Géotechnique, 35, 99–112. doi:10.1680/geot.1985.35.2.99
  • Bellotti, R., et al., 1997. Stiffness of Toyoura sand from dilatometer tests. Journal of Geotechnical and Geoenvironmental Engineering, 123 (9), 836–846. doi:10.1061/(ASCE)1090-0241(1997)123:9(836)
  • Cabalar, A.F., Cevik, A., and Guzelbey, I.H., 2010. Constitutive modeling of Leighton Buzzard Sands using genetic programming. Neural Computing and Applications, 19, 657–665. doi:10.1007/s00521-009-0317-4
  • Chen, C.W., 2007. A constitutive model for fibre reinforced soils. Thesis (PhD). University of Missouri Columbia.
  • Clough, G.W., et al., 1981. Cemented sands under static loading. Journal of the Geotechnical Engineering Division-ASCE, 107 (6), 799–817. doi:10.1061/AJGEB6.0001152
  • De, S. and Basudhar, P.K., 2008. Steady state strength behaviour of Yamuna sand. Geotechnical and Geological Engineering, 26 (3), 237–250. doi:10.1007/s10706-007-9160-5
  • Diambra, A., 2010. Fibre reinforced sands: experiments and modelling. Thesis (PhD). University of Bristol, UK.
  • Diambra, A., et al., 2012. Fibre reinforced sands: from experiments to modelling and beyond. International Journal for Numerical and Analytical Methods in Geomechanics, online. doi:10.1002/nag.21428. England
  • Ding, D. and Hargrove, S.K., 2006. Nonlinear stress-strain relationship of soil reinforced with flexible geofibres. Journal of Geotechnical & Geoenvironmental. Engineering, ASCE, 132 (6), 791–794. doi:10.1061/(ASCE)1090-0241(2006)132:6(791)
  • Edincliler, A., Cabalar, A.F., and Cevik, A., 2013. Modelling dynamic behaviour of sand–waste tires mixtures using Neural Networks and Neuro-Fuzzy. European Journal of Environmental and Civil Engineering, 17 (8), 720–741. doi:10.1080/19648189.2013.814552
  • Endo, T. and Tsuruta, T., 1969. The effect of the tree’s roots upon the shear strength of soil. Annual Report of the Hokkaido Branch Forest Experiment Station, pp. 167–182.
  • Erzin, Y. and Ecemis, N., 2017. The use of neural networks for the prediction of cone penetration resistance of silty sands. Neural Computing and Applications, 28, 727–736. doi:10.1007/s00521-016-2371-z
  • Festugato, L., et al., 2018. Modelling tensile/compressive strength ratio of fibre reinforced cemented soils. Geotextiles and Geomembranes, 46 (2), 155–165. doi:10.1016/j.geotexmem.2017.11.003
  • Gajo, A. and Muir-Wood, D., 1999a. Severn-Trent sand: a kinematic-hardening constitutive model: the q-p formulation. Geʹotechnique, 49 (5), 595–614. doi:10.1680/geot.1999.49.5.595
  • Gajo, A. and Muir-Wood, D., 1999b. A kinematic hardening constitutive model for sands: title: multiaxial formulation. International Journal for Numerical and Analytical Methods in Geomechanics, 23, 925–965. doi:10.1002/(SICI)1096-9853(19990810)23:9<925::AID-NAG19>3.0.CO;2-M
  • Gens, A. and Nova, R., 1993. Conceptual bases for a constitutive model for bonded soils and weak rocks. Proceedings Geotechnical Engineering of Soft Rocks-Hard Soils, Anagnostopoulos et al. (eds), Balkema, Rotterdam, 485–494.
  • Gray, D.H. and Al-Refeai, T., 1986. Behaviour of fabric-versus fibre-reinforced sand. Journal of Geotechnical Engineering, ASCE, 112 (8), 804.820. doi:10.1061/(ASCE)0733-9410(1986)112:8(804)
  • Gray, D.H. and Ohashi, H., 1983. Mechanics of fibre reinforcement in sands. Journal of Geotechnical Engineering, ASCE, 109 (3), 335–353.
  • Gu, X., Yang, J., and Huang, M., 2013. Laboratory measurements of small strain properties of dry sands by bender element. Soils and Foundations, 53 (5), 735–745. doi:10.1016/j.sandf.2013.08.011
  • Haeri, S.M. and Hamidi, A., 2009. Constitutive modelling of cemented gravelly sands. Geomechanics and Geoengineering: An International Journal, 4 (2), 123–139. doi:10.1080/17486020902855696
  • Hardin, B. and Black, W.L., 1966. Sand stiffness under various triaxial stresses. Journal of the Soil Mechanics and Foundations Division, ASCE, 92, 27–42. doi:10.1061/JSFEAQ.0000865
  • Hyodo, M., et al., 1994. Undrained cyclic and monotonic triaxial behaviour of saturated loose sand. Soils and Foundations, 34 (1), 19–32. doi:10.3208/sandf1972.34.19
  • Ishihara, K., 1993. Liquefaction and flow failure during earthquake. Géotechnique, 43, 351–415. doi:10.1680/geot.1993.43.3.351
  • Ladd, R., 1978. Preparing test specimens using undercompaction. Geotechnical Testing Journal 1 (1), 16–23. doi:10.1520/GTJ10364J
  • Lam, W.K. and Tatsuoka, F., 1988. Effects of initial anisotropic fabric and sigma2 on strength and deformation characteristics of sand. Soils and Foundations, 28 (1), 89–106. doi:10.3208/sandf1972.28.89
  • Liu, J., 2013. A study of the mechanical behaviour of cemented soils via structured cam clay. Thesis (Master). University of Wollongong.
  • Liu, M.D. and Carter, J.P., 2002. A structured cam clay model. Canadian Geotechnical Journal, 39, 1313–1332. doi:10.1139/t02-069
  • Machado, S.L., Carvalho, M.F., and Vilar, O.M., 2002. Constitutive model for municipal solid waste. Journal of the Geotechnical and Geoenvironmental Engineering, 128 (11), 940–951. doi:10.1061/(ASCE)1090-0241(2002)128:11(940)
  • Maher, M.H. and Gray, D.H., 1990. Static response of sands reinforced with randomly distributed fibres. Journal of Geotechnical Engineering, 116 (11), 1661–1677. doi:10.1061/(ASCE)0733-9410(1990)116:11(1661)
  • McGown, A., Andrawes, K.Z., and Al-Hasani, 1978. Effect of inclusion properties on the behaviour of sand. Geʹotechnique, 28 (3), 327–346. doi:10.1680/geot.1978.28.3.327
  • Michalowski, R.L., 1997. Limit stress for granular composites reinforced with continuous filaments. Journal Engineering Mechanics, 123 (8), 852–859. doi:10.1061/(ASCE)0733-9399(1997)123:8(852)
  • Michalowski, R.L., 2008. Limit analysis with anisotropic fibre-reinforecd soil. Geʹotechnique, 58 (6), 489–501. doi:10.1680/geot.2008.58.6.489
  • Michalowski, R.L. and Cermak, J., 2002. Strength anisotropy of fibre-reinforced sand. Computers and Geotechnics, 29, 279–299. doi:10.1016/S0266-352X(01)00032-5
  • Michalowski, R.L. and Zhao, A., 1996. Failure of fibre-reinforced granular soils. Journal of Geotechnical Engineering, ASCE, 122 (3), 226–234. doi:10.1061/(ASCE)0733-9410(1996)122:3(226)
  • Oda, M., 1977. On the Influence of progressive failure on the bearing capacity of shallow foundations in dense sand. Soils and Foundations, 17 (4), 71–73.
  • Pekau, O.A. and Gocevski, V., 1989. Elasto-plastic model for cemented and pure sand deposits. Computers and Geotechnics, 7, 155–187. doi:10.1016/0266-352X(89)90047-5
  • Prisco, C. and Nova, R., 1993. A constitutive model for soil reinforced by continuous threads. Geotextiles and Geomembranes, 12 (2), 161–178. doi:10.1016/0266-1144(93)90004-8
  • Rahimi, M., Chan, D., and Nouri, A., 2015. Bounding surface constitutive model for cemented sand under monotonic loading. International Journal of Geomechanics, ASCE, 16 (2), 04015049.
  • Ranjan, G., Vasan, R.M., and Charan, H.D., 1996. Probabilistic analysis of randomly distributed fibre-reinforced soil. Journal of Geotechnical Engineering, 122 (6), 419–426. doi:10.1061/(ASCE)0733-9410(1996)122:6(419)
  • Reddy, K.R., Saxena, S.K., and Budiman, J.S., 1992. Development of a true triaxial apparatus. Geotechnical Testing Journal, ASTM, l5 (2), 89–105.
  • Romero, R.J., 2003. Development of a constitutive model for fibre-reinforced soils. Thesis (PhD). University of Missouri-Columbia.
  • Rotisciani, G. and Miliziano, S., 2013. Guidelines for calibration and use of the Severn-Trent sand model in modeling cantilevered wall-supported excavations. International Journal of Geomechanics, 14 (6). doi:10.1061/(ASCE)GM.1943-5622.0000373
  • Safdar, M., 2018. Monotonic stress-strain behaviour of fibre reinforced cemented toyoura sand. Ph.D. Dissertation, Western University, London, Ontario, Canada.
  • Safdar, M., et al., 2020. Effect of fiber and cement additives on the small-strain stiffness behavior of toyoura sand. Sustainability, 12, 10468. doi:10.3390/su122410468
  • Schmidt, C.J.R., 2015. Static and dynamic response of silty toyoura sand with PVA fibre and cement additives. Thesis (Master). Western University, London, ON, Canada.
  • Shewbridge, S.E. and Sitar, N., 1989. Deformation characteristics of reinforced soil in direct shear. Journal of the Geotechnical and Geoenvironmental Engineering, 115 (8), 1134–1147. doi:10.1061/(ASCE)0733-9410(1989)115:8(1134)
  • Sonmezer, Y.B., 2019. Investigation of the liquefaction potential of fiber-reinforced sand. Geomechanics and Engineering, 18 (5), 503–513. doi:10.12989/gae.2019.18.5.503
  • Vatsala, A., Nova, R., and Srinivasa, M.B.R., 2001. Elastoplastic model for cemented soils. Journal of Geotechnical and Geoenvironmental Engineering, 127 (8), 679–687. doi:10.1061/(ASCE)1090-0241(2001)127:8(679)
  • Vidal, H., 1969. The principle of reinforced earth. High Res. Rec, 282, 1–16.
  • Waldron, J., 1977. Shear resistance of root-permeated homogeneous and stratified soil. Soil Science Society of America Journal, 41, 843–849. doi:10.2136/sssaj1977.03615995004100050005x
  • Waldron, L.J. and Dakessian, S., 1981. Soil reinforcement by roots: calculation of increased soil shear resistance from root properties. Soil Science, 132, 427–435. doi:10.1097/00010694-198112000-00007
  • Wang, Z.L., et al., 2002. State pressure index for modelling sand behaviour. Journal of Geotechnical and Geoenvironmental Engineering, 128 (6), 511–519. doi:10.1061/(ASCE)1090-0241(2002)128:6(511)
  • Wei, X. and Yang, J.A., 2019. Critical state constitutive model for clean and silty sand. Acta Geotechnica, 14, 329–345. doi:10.1007/s11440-018-0675-0
  • Whitlow, R., 2001. Basic soil mechanics. Dorchester: Pearson Education Ltd.
  • Wu, T.H., McKinnell, W.P., and Swanston, D.N., 1979. Strength of tree roots and landslides on Price of Wales Island, Alaska. Canadian Geotechnical Journal, 16 (1), 19–33. doi:10.1139/t79-003
  • Yang, J., Wei, L.M., and Dai, B.B., 2015. State variables for silty sands: global void ratio or skeleton void ratio? Soils and Foundations, 55 (1), 99–111. doi:10.1016/j.sandf.2014.12.008
  • Zornberg, J.G., 2002. Discrete framework for limit equilibrium analysis of fibrereinforced soil. Géotechnique, 52 (8), 593–604. doi:10.1680/geot.2002.52.8.593

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.