182
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Preliminary experimental investigation on the inundating-induced collapse in collapsible soils improved by encased sand column

ORCID Icon, & ORCID Icon
Pages 1499-1515 | Received 04 Jun 2020, Accepted 09 Jul 2021, Published online: 21 Jul 2021

References

  • Ali, K., Shahu, J.T., and Sharma, K.G., 2012. Model tests on geosynthetic-reinforced stone columns: a comparative study. Geosynthetics International, 19 (4), 292–305. doi:10.1680/gein.12.00016
  • Ali, K., Shahu, J.T., and Sharma, K.G., 2014. Model tests on single and groups of stone columns with different geosynthetic reinforcement arrangement. Geosynthetics International, 21 (2), 103–118. doi:10.1680/gein.14.00002
  • Almeida, M.S.S., Hosseinpour, I., and Riccio, M., 2013. Performance of a geosynthetic-encased column (GEC) in soft ground: numerical and analytical studies. Geosynthetics International, 20 (4), 252–262. doi:10.1680/gein.13.00015
  • Al-Obaidy, N., 2017. Treatment of collapsible soil using encased stone columns. (PhD). University of Birmingham.
  • Alonso, E.E., Gens, A., and Josa, A., 1990. A constitutive model for partially saturated soils. Géotechnique, 40 (3), 405–430. doi:10.1680/geot.1990.40.3.405
  • Ambily, A.P. and Gandhi, S.R., 2007. Behavior of Stone Columns Based on Experimental and FEM Analysis. Journal of Geotechnical and Geoenvironmental Engineering, 133 (4), 405–415. doi:10.1061/(ASCE)1090-0241(2007)133:4(405)
  • ASTM_D2166, 2016. Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. West Conshohocken, PA: ASTM Internationa.
  • ASTM_D2487, 2017. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). West Conshohocken, PA: ASTM Internationa.
  • ASTM_D4318, 2017. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. West Conshohocken, PA: ASTM Internationa.
  • ASTM_D6913, 2017. Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. West Conshohocken, PA: ASTM Internationa.
  • ASTM_D698, 2014. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort. West Conshohocken, PA: ASTM Internationa.
  • ASTM_D854, 2014. Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. West Conshohocken, PA: ASTM Internationa.
  • Ayadat, T. and Hanna, A.M., 2005. Encapsulated stone columns as a soil improvement technique for collapsible soil. Proceedings of the Institution of Civil Engineers - Ground Improvement, 9 (4), 137–147. doi:10.1680/grim.2005.9.4.137
  • Balaam, N.P. and Booker, J.R., 1985. effect of stone columns yield on-settlement of rigid foundations in stabilized clay, mt. Jnl Anal. Methods Geomech., 9 (4), 381–351
  • Barden, L., McGown, A. and Collins, K. 1973. The collapse mechanism in partly saturated soil. Engineering Geology, 7 (1), 49–60.
  • Black, J.A., et al. 2007. Reinforced stone columns in weak deposits: laboratory model study. Journal of Geotechnical and Geoenvironmental Engineering, 133 (9), 1154–1161. doi:10.1061/(ASCE)1090-0241(2007)133:9(1154)
  • Briaud, J.L. 1991. The pressuremeter: some special applications. Proceedings of the Geotechnical Engineering Congress, Boulder, CO, ASCE Geotechnical Special Publication, 27, 26–37.
  • Das, B.M., 2016. Foundations on difficult soils. In: Principles of Foundation Engineering Eighth ed. Boston, USA: Cengage Learning, Editors, Hilda Gowans and Eavan Cully, 557–592.
  • Deb, K., Samadhiya, N.K., and Namdeo, J.B., 2011. Laboratory model studies on unreinforced and geogrid-reinforced sand bed over stone column-improved soft clay. Geotextiles and Geomembranes, 29 (2), 190–196. doi:10.1016/j.geotexmem.2010.06.004
  • Debnath, P. and Dey, A.K., 2017. Bearing capacity of reinforced and unreinforced sand beds over stone columns in soft clay. Geosynthetics International, 24 (6), 575–589. doi:10.1680/jgein.17.00024
  • Demir, A. and Sarici, T., 2017. Bearing capacity of footing supported by geogrid encased stone columns on soft soil. Geomechanics and Engineering, 12 (3), 417–439. doi:10.12989/gae.2017.12.3.417
  • Derbyshire, E. and Mellors, T.W., 1988. Geological and geotechnical characteristics of some loess and loessic soils from China and Britain: a comparison. Engineering Geology, 25 (2–4), 135–175. doi:10.1016/0013-7952(88)90024-5
  • Di Prisco, C. and Galli, A., 2011. Mechanical behaviour of geo-encased sand columns: small scale experimental tests and numerical modelling. Geomechanics and Geoengineering, 6 (4), 251–263. doi:10.1080/17486025.2011.578756
  • Dickin, E.A. and Nazir, R., 1999. Moment-Carrying Capacity of Short Pile Foundations in Cohesionless Soil. Journal of Geotechnical and Geoenvironmental Engineering, 125 (1), 1–10. doi:10.1061/(ASCE)1090-0241(1999)125:1(1)
  • Dudley, J.H., 1970. Review of collapsing soils. Journal of the Soil Mechanics and Foundations Division, 96 (3), 925–947. doi:10.1061/JSFEAQ.0001426
  • Fattah, M., Shlash, K., and Al-Waily, M., 2011. Stress concentration ratio of model stone columns in soft clays. Geotechnical Testing Journal, 34 (1), 50–60.
  • Fredlund, D.G. and Gan, J.K.-M., 1995. The Collapse Mechanism of a Soil Subjected to One-Dimensional Loading and Wetting. In: E. Derbyshire, T. Dijkstra, and I.J. Smalley, eds. Genesis and Properties of Collapsible Soils. Dordrecht: Springer Netherlands, 173–205.
  • Fredlund, D.G. and Rahardjo, H., 1993. Soil mechanics for unsaturated soils. New York: Wiley.
  • Ghazavi, M. and Nazari Afshar, J., 2013. Bearing capacity of geosynthetic encased stone columns. Geotextiles and Geomembranes, 38, 26–36. doi:10.1016/j.geotexmem.2013.04.003
  • Gniel, J. and Bouazza, A., 2010. Construction of geogrid encased stone columns: a new proposal based on laboratory testing. Geotextiles and Geomembranes, 28 (1), 108–118. doi:10.1016/j.geotexmem.2009.12.012
  • Gu, M., et al. 2016. Effects of geogrid encasement on lateral and vertical deformations of stone columns in model tests. Geosynthetics International, 23 (2), 100–112. doi:10.1680/jgein.15.00035
  • Han, J. and Ye, S. Settlement analysis of buildings on the soft clays stabilized by stone columns.ed Proc., Int. Conf. On Soil Improvement and Pile Found, 1992. 446-451
  • Hasan, A. and Wheeler, S., 2015. Influence of unsaturated state variables on small strain elastic behaviour. In: Unsaturated Soil Mechanics-from Theory to Practice: proceedings of the 6th Asia Pacific Conference on Unsaturated Soils (Guilin, China ed. 2015 23-26 October 191. CRC Press, Taylor & Francis Group, London, UK.
  • Hasan, A. and Wheeler, S., 2016. Interpreting measurements of small strain elastic shear modulus under unsaturated conditions. E3S Web Conf, 9, 09006. doi:10.1051/e3sconf/20160909006
  • Hugher, J. and Withers, N., 1974. Reinforcing of soft cohesive soils with stone columns. Ground Engineering, 7, 3.
  • Hughes, J.M.O. and Withers, N.J., 1974. Reinforcing of soft cohesive soils with stone columns. Ground Engineering, 1 (3), 42–49
  • Hughes, J.M.O., Withers, N.J., and Greenwood, D.A., 1975. A field trialof the reinforcing effect of a stone column in soil. Ge´otechnique, 25 (1), 31–44.
  • Kaya,N. and Ornek, M. 2013. Experimental and numerical studies of T-shaped footings. Acta Geotechnica Slovenica, 10 (1), 43–58.
  • Koerner, R.M., 2012. Designing with geosynthetics. 6th. USA: Xlibris Corporation.
  • Kuo, J., 2014. Practical design calculations for groundwater and soil remediation. CRC Press. Taylor & Francis Group, London, UK
  • Lawton, E.C., Fragaszy, R.J., and Hardcastle, J.H., 1991. Stress ratio effects on collapse of compacted clayey sand. Journal of Geotechnical Engineering, 117 (5), 714–730. doi:10.1061/(ASCE)0733-9410(1991)117:5(714)
  • Lee, J.S. and Pande, G.N., 1998. Analysis of stone-column reinforced foundations. International Journal for Numerical and Analytical Methods in Geomechanics, 22 (12), 1001–1020. doi:10.1002/(SICI)1096-9853(199812)22:12<1001::AID-NAG955>3.0.CO;2-I
  • Liu, Z., et al. 2016. Collapsibility, composition, and microstructure of loess in China. Canadian Geotechnical Journal, 53 (4), 673–686. doi:10.1139/cgj-2015-0285
  • Mackechnie, W., Collapsible and swelling soils-Part 1: collapsible soils. ed. Proceedings of the twelfth international conference on soil mechanics and foundation engineering, 1989 Rio de Janeiro, 2485–2490.
  • Malarvizhi, S., 2007. Comparative study on the behavior of encased stone column and conventional stone column. Soils and Foundations, 47 (5), 873–885. doi:10.3208/sandf.47.873
  • Maswoswe, J., 1985. Stress paths for compacted soil during collapse due to wetting. Phd Thesis, Imperial College of Science and Technology, London.
  • Miller, H., et al., 2002. Modelling the collapse of metastable loess soils. PhD Thesis, the Nottingham Trent University, UK.
  • Murugesan, S. and Rajagopal, K., 2007. Model tests on geosynthetic-encased stone columns. Geosynthetics International, 14 (6), 346–354. doi:10.1680/gein.2007.14.6.346
  • Pereira, J.H.F. and Fredlund, D.G., 2000. Volume Change Behavior of Collapsible Compacted Gneiss Soil. Journal of Geotechnical and Geoenvironmental Engineering, 126 (10), 907–916. doi:10.1061/(ASCE)1090-0241(2000)126:10(907)
  • Priebe, H., 1976. Abschatzunz des Setzungsverhattens Elnes Durch stopverdichtung verbesserten Baugrundes. Die Bautechnik, (53), 160–162.
  • Rogers, C.D.F., 1995. Types and Distribution of Collapsible Soils. In: E. Derbyshire, T. Dijkstra, and I.J. Smalley, eds. Genesis and Properties of Collapsible Soils. Dordrecht: Springer Netherlands, 1–17.
  • Shahu, J.T. and Reddy, Y.R., 2011. Clayey Soil Reinforced with Stone Column Group: model Tests and Analyses. Journal of Geotechnical and Geoenvironmental Engineering, 137 (12), 1265–1274. doi:10.1061/(ASCE)GT.1943-5606.0000552
  • Sharma, R.S., Kumar, B.P., and Nagendra, G., 2004. Compressive load response of granular piles reinforced with geogrids. Canadian Geotechnical Journal, 41 (1), 187–192. doi:10.1139/t03-075
  • Sivakumar, V., et al. 2004. Triaxial tests on model sand columns in clay. Canadian Geotechnical Journal, 41 (2), 299–312. doi:10.1139/t03-097
  • Sivakumar, V., et al. 2010. Effects of granular columns in compacted fills. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 163 (4), 189–196. doi:10.1680/geng.2010.163.4.189
  • Sun, D.A., Sheng, D., and Xu, Y., 2007. Collapse behaviour of unsaturated compacted soil with different initial densities. Canadian Geotechnical Journal, 44 (6), 673–686. doi:10.1139/t07-023
  • Tang, L., et al. 2015. Numerical study on ground improvement for liquefaction mitigation using stone columns encased with geosynthetics. Geotextiles and Geomembranes, 43 (2), 190–195. doi:10.1016/j.geotexmem.2014.11.011
  • Thorburn, S., 1975. Building structures supported by stabilized ground. Géotechnique, 25 (1), 83–94. doi:10.1680/geot.1975.25.1.83
  • Vandanapu, R., Omer, J.R., and Attom, M.F., 2017. Laboratory simulation of irrigation-induced settlement of collapsible desert soils under constant surcharge. Geotechnical and Geological Engineering, 35 (6), 2827–2840. doi:10.1007/s10706-017-0282-0
  • Wang, J.-D., et al. 2020. Change in pore-size distribution of collapsible loess due to loading and inundating. Acta Geotechnica, 15 (5), 1081–1094. doi:10.1007/s11440-019-00815-9
  • Watts, K. and Charles, J.A., 2018. Building on fill: geotechnical aspects. UK: IHS BRE Press.
  • Watts, K.S., et al. 2000. An instrumented trial of vibro ground treatment supporting strip foundations in a variable fill. Géotechnique, 50 (6), 699–708. doi:10.1680/geot.2000.50.6.699
  • Wood, D.M., Hu, W., and Nash, D.F.T., 2000. Group effects in stone column foundations: model tests. Géotechnique, 50 (6), 689–698. doi:10.1680/geot.2000.50.6.689
  • Wu, C.-S. and Hong, Y.-S., 2008. The behavior of a laminated reinforced granular column. Geotextiles and Geomembranes, 26 (4), 302–316. doi:10.1016/j.geotexmem.2007.12.003
  • Wu, C.-S. and Hong, Y.-S., 2009. Laboratory tests on geosynthetic-encapsulated sand columns. Geotextiles and Geomembranes, 27 (2), 107–120. doi:10.1016/j.geotexmem.2008.09.003
  • Yuan, S., Liu, X., and Buzzi, O., 2019. A microstructural perspective on soil collapse. Géotechnique, 1–9.
  • Zhang, Y., Li, T., and Wang, Y., 2011. Theoretical elastic solutions for foundations improved by geosynthetic-encased columns. Geosynthetics International, 18 (1), 12–20. doi:10.1680/gein.2011.18.1.12

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.