146
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Response surface methodology: a tool to optimise the contents of lime and polyethylene terephthalate (PET) fiber for stabilising a residual soil

, , &
Pages 1516-1535 | Received 16 Jun 2020, Accepted 09 Jul 2021, Published online: 26 Jul 2021

References

  • Aamir, M., et al., 2019. Performance evaluation of sustainable soil stabilization process using waste materials. Processes, 7 (378), 1–16. doi:10.3390/pr7060378
  • Alam, M.Z., Muyibi, S.A., and Toramae, J., 2007. Statistical optimization of adsorption processes for removal of 2, 4-dichlorophenol by activated carbon derived from oil palm empty fruit bunches. Journal of Environmental Sciences, 19, 674–677. doi:10.1016/S1001-0742(07)60113-2
  • Alrubaye, A.J., Hasan, M., and Fattah, M.Y., 2017. Stabilization of soft kaolin clay with silica fume and lime. International Journal of Geotechnical Engineering, 11 (1), 90–96. doi:10.1080/19386362.2016.1187884
  • Alrubaye, A.J., Hasan, M., and Fattah, M.Y., 2018. Effects of using silica fume and lime in the treatment of kaolin soft clay. Geomechanics and Engineering, 14 (3), 247–255. doi:10.12989/gae.2018.14.3.247
  • Al-Swaidani, A., Hammoud, I., and Meziab, A., 2016. Effect of adding natural pozzolana on geotechnical properties of lime-stabilized clayey soil. Journal Rock Mechanics and Geotechnical Engineering, 8 (5), 714–725. doi:10.1016/j.jrmge.2016.04.002
  • Anggraini, V., et al., 2016. Effects of coir fibres modified with Ca(OH)2 and Mg(OH)2 nanoparticles on mechanical properties of lime-treated marine clay. Geosynthetic International, 23 (3), 206–218. doi:10.1680/jgein.15.00046
  • Arulrajah, A., et al., 2020. Stiffness and flexural strength evaluation of cement stabilized PET blends with demolition wastes. Construction and Building Materials, 239, 117819. doi:10.1016/j.conbuildmat.2019.117819
  • ASTM, 2003. Standard guide for evaluating effectiveness of admixtures for soil stabilization. West Conshohocken, PA: ASTM International.
  • ASTM D1635/D1635M-12, 2012. Standard test method for flexural strength of soil-cement using simple beam with third-point loading. West Conshohocken, PA: ASTM International. doi:10.1520/D1635_D1635M-12
  • BS 1377, 1990. . Methods of testing soils for civil engineering purposes. London: British standards institution.
  • Cai, G.H., Liu, S.Y., and Zheng, X., 2019. Influence of drying-wetting cycles on engineering properties of carbonated silt admixed with reactive MgO. Construction and Building Materials, 204, 84–93. doi:10.1016/j.conbuildmat.2019.01.125
  • Cuisinier, O., et al., 2011. Microstructure and hydraulic conductivity of a compacted lime-treated soil. Engineering Geology, 123 (3), 187–193. doi:10.1016/j.enggeo.2011.07.010
  • De Brito, et al., 2004. Effects of lime on permeability and compressibility of two tropical residual soils. Journal of Environmental Engineering, 130 (8), 881–885. doi:10.1061/(ASCE)0733-9372(2004)130:8(881)
  • Dos Santos Lopes Louzada, N., Malko, J.A.C., and Casagrande, M.D.T., 2019. Behavior of clayey soil reinforced with polyethylene terephthalate. Journal of Materials in Civil Engineering, 31 (10), 04019218. doi:10.1061/(ASCE)MT.1943-5533.0002863
  • Emmanuel, E., et al., 2019a. Improving the engineering properties of a soft marine clay with forsteritic olivine. European Journal of Environmental and Civil Engineering, 1–28. doi:10.1080/19648189.2019.1665593
  • Emmanuel, E., et al., 2019b. Stabilization of a soft marine clay using halloysite nanotubes: a multi-scale approach. Applied Clay Science, 173, 65–78. doi:10.1016/j.clay.2019.03.014
  • Fattah, M.Y., Al-Saidi, A.A., and Jaber, M.M., 2015b. Improvement of bearing capacity of footing on soft clay grouted with lime-silica fume mix. Geomechanics and Engineering, 8 (1), 113–132. doi:10.12989/gae.2015.8.1.000
  • Fattah, M.Y., Al-Saidi, À.A., and Jaber, M.M., 2015a. Characteristics of clays stabilized with lime-silica fume mix. Italian Journal of Geosciences, 134 (1), 104–113. doi:10.3301/IJG.2014.36
  • Goodarzi, A.R., Akbari, H.R., and Salimi, M., 2016. Enhanced stabilization of highly expansive clays by mixing cement and silica fume. Applied Clay Science, 132-133, 675–684. doi:10.1016/j.clay.2016.08.023
  • Horpibulsuk, S., et al., 2013. Strength development in silty clay stabilized with calcium carbide residue and fly ash. Soils and Foundation, 53 (4), 477–486. doi:10.1016/j.sandf.2013.06.001
  • Huat, B.B.K., Toll, D.G., and Prasad, A., 2012. Handbook of Tropical Residual Soils Engineering. London: CRC Press.
  • Jafer, H.M., Obaid, H.A., and Had, A.H., 2013. Stabilization of soft soil subgrade layers by using lime-micro silica fume mixture. Euphrates Journal of Agriculture Science, 5 (1), 44–53.
  • Kalkan, E., 2011. Impact of wetting–drying cycles on swelling behavior of clayey soils modified by silica fume. Applied Clay Science, 52 (4), 345–352. doi:10.1016/j.clay.2011.03.014
  • Kalkan, E., 2013. Preparation of scrap tire rubber fiber–silica fume mixtures for modification of clayey soils. Applied Clay Science, 80-81, 117–125. doi:10.1016/j.clay.2013.06.014
  • Lin, D.F., Lin, K.L., and Luo, H.L., 2007. A Comparison between sludge ash and fly ash on the improvement in soft soil. Journal of the Air & Waste Management Association, 57 (1), 59–64. doi:10.1080/10473289.2007.10465294
  • Mahalik, K., et al., 2010. Statistical modelling and optimization of hydrolysis of urea to generate ammonia for flue gas conditioning. Journal of Hazardous Materials,182, 603–610. doi:10.1016/j.jhazmat.2010.06.075
  • Mishra, B. and Gupta, K.M., 2018. Use of randomly oriented polyethylene terephthalate (PET) fiber in combination with fly ash in subgrade of flexible pavement. Construction and Building Materials, 190, 95–107. doi:10.1016/j.conbuildmat.2018.09.074
  • Perera, S., et al., 2019. Utilizing recycled PET blends with demolition wastes as construction materials. Construction and Building Materials, 221, 200–209. doi:10.1016/j.conbuildmat.2019.06.047
  • Phanikumar, B.R., Raju, M.J., and Raju, E.R., 2019. Silica fume stabilization of an expansive clay subgrade and the effect of silica fume-stabilised soil cushion on its CBR. Geomechanics and Geoengineering, 1–14. doi:10.1080/17486025.2019.1620348
  • Puppala, A.J., et al., 2004. Studies on sulfate-resistant cement stabilization methods to address the sulfate-induced soil heave. Journal of Geotechnical and Geoenvironmental Engineering, 130 (4), 391–402. doi:10.1061/(ASCE)1090-0241(2004)130:4(391)
  • Romão, W., Spinacé, M.A.S., and De Paoli, M.A., 2009. Poli (tereftalato de etileno), PET: uma revisão sobre os processos de síntese, mecanismo de degradação e sua reciclagem [In Portuguese]. Polímeros: Ciência E Tecnologia, 19 (2), 121–132. doi:10.1590/S0104-14282009000200009
  • Sahu, J.N., Acharya, J., and Meikap, B.C., 2009. Response surface modeling and optimization of chromium(VI) removal from aqueous solution using Tamarind wood activated carbon in batch process. Journal of Hazardous Materials, 172 (2–3), 818–825. doi:10.1016/j.jhazmat.2009.07.075
  • Talib, N.A.A., et al., 2017. Modeling and optimization of electrode modified with poly(3,4-ethylenedioxythiophene)/graphene oxide composite by response surface methodology/Box-Behnken design approach. Journal of Electroanalytical Chemistry, 787, 1–10. doi:10.1016/j.jelechem.2017.01.032
  • Tran, K.Q., Satomi, T., and Takahashi, H., 2018. Effect of waste cornsilk fiber reinforcement on mechanical properties of soft soils. Transportation Geotechnics, 16, 76–84. doi:10.1016/j.trgeo.2018.07.003
  • World Bank Group. Solid Waste Management., 2019 https://www.worldbank.org/en/topic/urbandevelopment/brief/solid-waste-management. Accessed 12 January 2020
  • Yi, S., et al., 2010. Application of response surface methodology and central composite rotatable design in optimizing the preparation conditions of vinyltriethoxysilane modified silicalite/polydimethylsiloxane hybrid pervaporation membranes. Separation and Purification Technology, 71 (2), 252–262. doi:10.1016/j.seppur.2009.12.005
  • Yong, L.L., et al., 2019. Stabilization of a residual soil using calcium and magnesium hydroxide nanoparticles: a quick precipitation method. Applied Sciences, 9 (20), 4325: 1–15. doi:10.3390/app9204325

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.