128
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Improving the mechanical behaviour of clay contaminated with glycerol and anthracene using lime and Portland cement

ORCID Icon &
Pages 1-15 | Received 23 Apr 2021, Accepted 07 Oct 2021, Published online: 29 Oct 2021

References

  • Agency for Toxic Substances and Disease Registry (ATSDR), 1990. Public health statement, polycyclic aromatic hydrocarbons. Atlanta, GA: U.S. Department of Health and Human Services.
  • Akinwumi, I., Booth, A., and Diwa, D., 2016. Cement stabilisation of crude-oil-contaminated soil. Proceedings of the Institution of Civil Engineers Geotechnical Engineering, 169 (4), 336–345. doi:10.1680/jgeen.15.00108
  • Alrubaye, A.J., Hasan, M., and Fattah, M.Y., 2017. Stabilization of soft kaolin clay with silica fume and lime. International Journal of Geotechnical Engineering, 11 (1), 90–96. doi:10.1080/19386362.2016.1187884
  • Alrubaye, A.J., Hasan, M., and Fattah, M.Y., 2018. Effects of using silica fume and lime in the treatment of kaolin soft clay. Geomechanics and Engineering, 14 (3), 247–255.
  • Ampera, B. and Aydogmus, T., 2005. Recent experiences with cement and lime – stabilization of local typical poor cohesive soil. In: I.H. Klapperich, ed. Veröffentlichungen des Instituts für Geotechnik der TU ergakademie Freiberg. Heft 2005-2 ed. TU Bergakademie Freiberg, Institut für Geotechnik, 121–144.
  • ASTM (American Society for Testing and Materials), 2007. Standard test method for compressive strength of moulded soil-cement cylinders. West Conshohocken, PA: ASTM D1633.
  • ASTM (American Society for Testing and Materials), 2008a. Standard test method for compressive strength of hydraulic cement mortars. West Conshohocken, PA: ASTM C109.
  • ASTM (American Society for Testing and Materials), 2008b. Standard test method for time setting of hydraulic cement by Vicat needle. West Conshohocken, PA: ASTM C191.
  • ASTM (American Society for Testing and Materials), 2010. Standard test method for normal consistency of hydraulic cement. West Conshohocken, PA: ASTM C187.
  • ASTM (American Society for Testing and Materials), 2012. Standard test methods for laboratory compaction characteristics of soil using standard effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). West Conshohocken, PA: ASTM D698.
  • Bensted, J. and Barnes, P., 2002. Structure and performance of cements. New York: Spon Press.
  • Botta, D., et al., 2004. Cement–clay pastes for stabilization/solidification of 2-chloroaniline. Waste Management, 24 (2), 207–216. doi:10.1016/j.wasman.2003.10.005
  • Brosky, R.T. and Pamukcu, S., 2015. Role of DDL processes during electrolytic reduction of Cu (II) in a low oxygen environment. Journal of Hazardous Materials, 262, 878–882. doi:10.1016/j.jhazmat.2013.09.032
  • Chavali, R.V.P., et al., 2020. Effect of acid and alkali contamination on swelling behavior of kaolin clay. Minneapolis, Minnesota: Geo-Congress, 25–28.
  • Chen, H., et al., 2017. Experimental study of the stabilization effect of cement on diesel contaminated soil. Quarterly Journal of Engineering Geology and Hydrogeology, 50, 199–205. doi:10.1144/qjegh2016-115
  • Choquette, M., Bérubé, M.A., and Locat, J., 1987. Mineralogical and micro textural changes associated with lime stabilization of marine clays from eastern Canada. Applied Clay Science, 2 (3), 215–232. doi:10.1016/0169-1317(87)90032-9
  • Consoli, N.C., et al., 2007. Key parameters for strength control of artificially cemented soils. Geotechnical and Geoenvironmental Engineering, 133 (2), 197–205. doi:10.1061/(ASCE)1090-0241(2007)133:2(197)
  • Das, B.M., 2013. Advanced soil mechanics. CRC Press, 634.
  • Dehghan, A., Hamidi, A., 2016. Triaxial shear behavior of sand-gravel mixtures reinforced with cement and fiber. International Journal of Geotechnical Engineering, 10 (5), 510-520. doi:10.1080/19386362.2016.1175217
  • Delgado, L. and Romero, E.M., 2013. Removal of anthracene from recently contaminated and aged soils. Water, Air and Soil Pollution, 224 (2), 1420. doi:10.1007/s11270-012-1420-1
  • Den Haan, E.J., 1998. Cement based stabilizers for Dutch organic soils. In: Proc. Int. Conf. on Problematic Soils. Rotterdam, Netherlands: A.A. Balkema, 1, 53–56.
  • Devatha, C.P., Vishnu Vishal, A., and Chandra Rao, J.P., 2019. Investigation of physical and chemical characteristics on soil due to crude oil contamination and its remediation. Applied Water Science, 9, 89. doi:10.1007/s13201-019-0970-4
  • Du, J., et al., 2021. Triaxial behavior of cement-stabilized organic matter–disseminated sand. Acta Geotech, 16, 211–220. doi:10.1007/s11440-020-00992-y
  • Du, Y.J., et al., 2012. Experimental investigation of influence of acid rain on leaching and hydraulic characteristics of cement based solidified/stabilized lead contaminated clay. Journal of Hazardous Materials, 225–226, 195–201. doi:10.1016/j.jhazmat.2012.04.072
  • Eibes, G., et al., 2005. Complete degradation of anthracene by manganese peroxidase in organic solvent mixtures. Enzyme and Microbial Technology, 37 (4), 365–372. doi:10.1016/j.enzmictec.2004.02.010
  • Estabragh, A.R., et al., 2018. Mechanical and leaching behavior of a stabilized and solidified anthracene-contaminated soil. Journal of Environmental Engineering, 144 (2), 04017098. doi:10.1061/(ASCE)EE.1943-7870.0001311
  • Estabragh, A.R., et al., 2020. Effect of ageing on the properties of a clay soil contaminated with glycerol. Geomechanics and Geoengineering: An International Journal, 1–12. doi:10.1080/17486025.2020.1827165
  • Estabragh, A.R., Khatibi, M., and Javadi, A.A., 2016. Effect of cement on treatment of a clay soil contaminated with glycerol. Journal of Materials in Civil Engineering, 28 (4), 04015157. doi:10.1061/(ASCE)MT.1943-5533.0001443
  • Fattah, M.Y., Al-Saidi, A.A., and Jaber, M.M., 2015a. Characteristics of clays stabilized with lime-silica fume mix. Italian Journal of Geosciences, 134 (1), 104–113. doi:10.3301/IJG.2014.36
  • Fernandez, F., et al. 1991. Hydrocarbon liquids and clay microstructure. In: R.H. Bennett, ed. Microstructure of fine-grained sediments: from mud to shale. New York: Springer New York, 469–474.
  • Ghadyani, M., Hamidi, A., and Hatambeigi, M., 2019. Triaxial shear behaviour of oil contaminated clays. European Journal of Environmental and Civil Engineering, 23 (1), 112–135. doi:10.1080/19648189.2016.1271359
  • Gussoni, M., et al., 2004. HNMR spin-spin relaxation and imaging in porous system: an application to the morphological study of white Portland cement during hydration in the presence of organics. Magnetic Resonance Imaging, 22 (6), 877–889. doi:10.1016/j.mri.2004.01.068
  • Hamidi, A. and Karimi, A.H., 2021. Effect of phytoremediation on compression characteristics of silty clayey sand contaminated with crude oil. International Journal of Civil Engineering, 19 (8), 973–995. doi:10.1007/s40999-021-00609-9
  • Harrison, R.M., 2006. An introduction to pollution science. Royal Society of Chemistry.
  • Hamidi, A., Soleimani, M., 2012. Shear strength-dilation relation in cemented gravely sands. International Journal of Geotechnical Engineering, 6 (4), 415-425. doi:10.3328/IJGE.2012.06.04.415-425
  • Hassan, H.F., et al., 2005. Potential uses of petroleum-contaminated soil in highway construction. Construction and Building Materials, 19 (8), 646–652. doi:10.1016/j.conbuildmat.2005.01.001
  • Ijimdiya, T.S., 2013. The effects of oil contamination on the consolidation properties of lateritic. Soil Development and Applications of Oceanic Engineering (DAOE), 2 (2), 53–59.
  • Izdebska-Muchaa, D., et al., 2011. Influence of hydrocarbon contamination on clay soil microstructure. Clay Minerals, 46 (1), 47–58. doi:10.1180/claymin.2011.046.1.47
  • Jaynes, W.F. and Wang, G.F., 1999. Sorption of benzene, toluene, ethylbenzene, and xylene (BTEX) compounds by hectorite clays exchanged with aromatic organic cations. Clays and Clay Minerals, 47 (3), 358–365. doi:10.1346/CCMN.1999.0470312
  • Juo, A.S.R. and Franzluebbers, K., 2004. Tropical soils—properties and management for sustainable agriculture. Geoderma, 123, 373–375. doi:10.1016/j.geoderma.2004.02.016
  • Karimi, A.H. and Hamidi, A., 2021. Effect of phytoremediation on the shear strength characteristics of silty clayey sand. Bulletin of Engineering Geology and the Environment, 80, 3903–3922. doi:10.1007/s10064-021-02161-1
  • Khamehchiyan, M., Charkhabi, A.H., and Tajik, M., 2007. Effects of crude oil contamination on geotechnical properties of clayey and sandy soils. Engineering Geology, 89 (3–4), 220–229. doi:10.1016/j.enggeo.2006.10.009
  • Khosravi, E., et al., 2013. Geotechnical properties of gas oil contaminated kaolinite. Engineering Geology, 166, 11–16. doi:10.1016/j.enggeo.2013.08.004
  • Kogbara, R.B. and Al-Tabbaa, A., 2011. Mechanical and leaching behaviour of slag-cement and lime activated slag stabilized/solidified contaminated soil. Science of the Total Environment, 409 (11), 2325–2335. doi:10.1016/j.scitotenv.2011.02.037
  • Kumar, A., Walia, B.S., and Bajaaj, A., 2007. Influence of fly ash, lime and polyester fibers on compacted and strength properties of expansive soil. Journal of Materials in Civil Engineering, 19 (3), 242–248. doi:10.1061/(ASCE)0899-1561(2007)19:3(242)
  • Lang, L., Chen, B., and Duan, H., 2021. Modification of nanoparticles for the strength enhancing of cement-stabilized dredged sludge. Journal of Rock Mechanics and Geotechnical Engineering, 13 (3), 694–704. doi:10.1016/j.jrmge.2021.01.006
  • Lang, L., Liu, N., and Chen, B., 2020. Strength development of solidified dredged sludge containing humic acid with cement, lime and nano-SiO2. Construction and Building Materials, 230, 116971. doi:10.1016/j.conbuildmat.2019.116971
  • Leonard, S.A. and Stegemann, J.A., 2010. Stabilization/solidification of petroleum drill cuttings. Journal of Hazardous Materials, 174 (1–3), 463–472. doi:10.1016/j.jhazmat.2009.09.075
  • Li, L., et al., 2015. Transformation of anthracene on various cation-modified clay minerals. Environmental Science and Pollution Research, 22, 1261–1269. doi:10.1007/s11356-014-3424-4
  • Liu, S.Y., et al., 2012. Field investigation on performance of T-shaped deep mixed columns over soft ground. Journal of Geotechnical and Geoenvironmental Engineering, 138 (6), 718–727. doi:10.1061/(ASCE)GT.1943-5606.0000625
  • Maliszewska-Kordybach, B., 1999. Sources, concentrations, fate and effects of polycyclic aromatic hydrocarbons (PAHs) in the environment. Part A: pAHs in Air. Polish Journal of Environmental Studies, 8 (3), 131–136.
  • Marx, A.M., Echevesteb, M.E.S., and Paula, I.C., 2011. Quality function deployment applied to a Sustainable detergent project. Production, 21 (4), 724–741. doi:10.1590/S0103-65132011005000057
  • Muntohar, A.S. and Hantoro, G., 2000. Influence of rice husk ash and lime on engineering properties of clayey subgrade. Electronic Journal of Geotechnical Engineering, 5, 1–9.
  • Nazari Heris, M., et al., 2020. Effects of lead and gasoline contamination on geotechnical properties of clayey soils. Soil and Sediment Contamination, 29 (3), 340–354. doi:10.1080/15320383.2020.1719973
  • Oldham, K.B., 2008. A Gouy-Chapman-Stern model of the double layer at a (metal)/ (ionic liquid) interface. Journal of Electroanalytical Chemistry, 613 (2), 131–138. doi:10.1016/j.jelechem.2007.10.017
  • Olgun, M. and Yildiz, M., 2012. The effects of pore fluids with different dielectric constants on the geotechnical behaviour of kaolinite. Arabian Journal for Science and Engineering, 37 (7), 1833–1848. doi:10.1007/s13369-012-0266-6
  • Oluwatuyi, O., Ojuri, O., and Khoshghalb, A., 2020. Cement-lime stabilization of crude oil contaminated kaolin clay. Journal of Rock Mechanics and Geotechnical Engineering, 12, 160–167. doi:10.1016/j.jrmge.2019.07.010
  • Pagliaro, M., 2017. Glycerol. In: The renewable platform chemical. 1st ed. Amsterdam, Netherlands: Elsevier.
  • Paria, S. and Yuetl, P.K., 2006. Solidification-stabilization of organic and inorganic contaminants using Portland cement: a literature review. Environmental Reviews, 14 (4), 217–255. doi:10.1139/a06-004
  • Parkkinen, E., 1997. Utilization of industrial by-products to strength soft clayey and organic soils. In: Proc., 14th Int. Conf. on Soil Mechanics and Foundation Engineering (ICSMFE). Rotterdam, Netherlands: A.A. Balkema, 1701–1704.
  • Pincus, H.J., Meegoda, N.J., and Ratnaweera, P., 1995. Treatment of oil contaminated soils for identification and classification. Geotechnical Testing Journal, 18 (1), 41–49. doi:10.1520/GTJ10120J
  • Schmertmann, J., Teachavorasinskun, A.S., and Zhao, D., 2001. Triaxial behavior of kaolinite in different pore fluids. Journal of Geotechnical and Geoenvironmental Engineering, 12 (5), 463–465. doi:10.1061/(ASCE)1090-0241(2001)127:5(463)
  • Sezer, A., et al., 2006. Utilization of a very high lime fly ash for improvement of Izmin clay. Building and Environment, 41 (2), 150–155. doi:10.1016/j.buildenv.2004.12.009
  • Sheng, G., Xu, S., and Boyd, S.A., 1996. Mechanism (s) controlling sorption of neutral organic contaminants by surfactant-derived and natural organic matter. Environmental Science & Technology, 30 (5), 1553–1557. doi:10.1021/es9505208
  • Singh, S.K., Srivastava, R.K., and John, S., 2008. Settlement characteristics of clayey soils contaminated with petroleum hydrocarbons. Soil and sediment contamination. An International Journal, 17 (3), 290–300.
  • Solly, G., et al., 2015. Study of geotechnical properties of diesel oil contaminated soil. International Journal of Civil and Structural Engineering Research, 2, 113–117.
  • Srivastava, L.P., Paramkusam, B.R., and Prasad, A., 2010. Stabilisation of engine oil contaminated soil using cement kiln dust. In: Proc. Indian Geotechncial Conference, GEOtrendz, IGS Mumbai Chapter & IIT Bombay. India.
  • Suresh, A.R. and D’Cruz, T.C., 2019. Strength characteristics of soil glycerol mixture: cement as additive. International Journal of Research in Engineering, Science and Management, 2 (2), 483–484.
  • Tremblay, H., et al., 2002. Influence of the nature of organic compounds on fine soil stabilization with cement. Canadian Geotechnical Journal, 39, 535–546. doi:10.1139/t02-002
  • Van der Perk, M., 2006. Soil and water contamination: from molecular to catchment scale. AK Leiden, The Netherlands: Taylor & Francis/ Balkema.
  • Yazdandoust, F. and Yasrobi, S.S., 2010. Effect of cyclic wetting and drying on swelling behaviour of polymer-stabilized expansive clays. Applied Clay Science, 50 (4), 461–468. doi:10.1016/j.clay.2010.09.006
  • Yilmaz, O., Üniü, K., and Cokca, E., 2003. Solidification/stabilization of hazardous wastes containing metals and organic contaminants. Journal of Environmental Engineering, 129 (4), 366–376. doi:10.1061/(ASCE)0733-9372(2003)129:4(366)
  • Yong, R.N. and Mulligan, C.N., 2003. Natural attenuation of contaminants in soils. CRC Press.
  • Zoller, U., 2009. Handbook of detergents, part F: production. 1rd ed. Boca Raton London New York.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.