188
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Use of joint supervised machine learning algorithms in assessing the geotechnical peculiarities of erodible tropical soils from southeastern Nigeria

ORCID Icon
Pages 16-33 | Received 31 Jan 2021, Accepted 11 Nov 2021, Published online: 07 Dec 2021

References

  • Acharya, T.D., et al., 2019. Decision-tree-based mapping of erosion-prone areas in hilly regions of Kangwon Province, North Korea. Sensors and Materials, 31 (11), 3899–3915. doi:10.18494/SAM.2019.2707
  • Achour, Y. and Pourghasemi, H.R., 2020. How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? Geoscience Frontiers, 11 (3), 871–883. doi:10.1016/j.gsf.2019.10.001.
  • Adeniyi, A.G., Ighalo, J.O., and Marques, G., 2020. Utilisation of machine learning algorithms for the prediction of syngas composition from biomass bio-oil steam reforming. International Journal of Sustainable Energy. doi:10.1080/14786451.2020.1803862
  • Alkhasawneh, M.S., et al., 2014. Modeling and testing landslide hazard using decision tree. Journal of Applied Mathematics, 2014, 1–9. doi:10.1155/2014/929768
  • Althuwaynee, O.F., et al., 2014. A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena, 114, 21–36. doi:10.1016/j.catena.2013.10.011
  • Andrews, D.C.A. and Martin, G.R. 2000. Criteria for liquefaction of silty soils. Proc.12th WCEE, Auckland, New Zealand
  • Arabameri, A., et al., 2020. Novel machine learning approaches for modelling the gully erosion susceptibility. Remote Sensing, 12 (17), 2833. doi:10.3390/rs12172833
  • Armaghani, D.J., et al., 2014. An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range granite. Bulletin of Engineering Geology and the Environment. doi:10.1007/s10064-014-0687-4
  • Armaghani, D.J., et al., 2016a. Prediction of the strength and elasticity modulus of granite through an expert artificial neural network. Arabian Journal of Geosciences, 9 (1), 48. doi:10.1007/s12517-015-2057-3
  • Armaghani, D.J., et al., 2016b. Airblast prediction through a hybrid genetic algorithm-ANN model. Neural Computing and Applications. doi:10.1007/s00521-016-2598-8
  • Arora, K.R., 2008. Soil mechanics and foundation engineering (geotechnical engineering). 8th. Delhi: Standard Publishers Distributors.
  • Bergen, K.J., et al., 2019. Machine learning for data-driven discovery in solid Earth geoscience. Science, 363 (6433), eaau0323. doi:10.1126/science.aau0323
  • Blyth, F.G.H. and de Freitas, M.H., 2005. A geology for engineers. 7th. Great Britain: Butterworth-Heinemann.
  • Bryan, R.B., 2000. Soil erodibility and processes of water erosion on hillslope. Geomorphology, 32 (3–4), 385–415. doi:10.1016/S0169-555X(99)00105-1
  • Budhu, M., 2015. Soil mechanics fundamentals. London: Wiley.
  • Budimir, M.E.A., Atkinson, P.M., and Lewis, H.G., 2015. A systematic review of landslide probability mapping using logistic regression. Landslides, 12 (3), 419–436. doi:10.1007/s10346-014-0550-5
  • Cawley, G.C. and Talbot, N.L.C., 2006. Gene selection in cancer classification using sparse logistic regression with Bayesian regularization. Bioinformatics, 22 (19), 2348–2355. doi:10.1093/bioinformatics/btl386
  • Chakrabortty, R., et al., 2020. Assessing the importance of static and dynamic causative factors on erosion potentiality using SWAT, EBF with uncertainty and plausibility, logistic regression and novel ensemble model in a sub-tropical environment. Journal of the Indian Society of Remote Sensing, 48 (5), 765–789. doi:10.1007/s12524-020-01110-x
  • Chakrabortty, R., et al., 2020b. Soil erosion potential hotspot zone identification using machine learning and statistical approaches in eastern India. Natural Hazards, 104 (2), 1259–1294. doi:10.1007/s11069-020-04213-3
  • Chakraborty, A. and Goswami, D., 2017. Prediction of slope stability using multiple linear regression (MLR) and artificial neural network (ANN). Arabian Journal of Geosciences, 10 (17), 385. doi:10.1007/s12517-017-3167-x
  • Chang, K., et al., 2019. Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques. Scientific Reports, 9, 12296. doi:10.1038/s41598-019-48773-2
  • Chen, W., Pourghasemi, H.R., and Zhao, Z., 2017. A GIS-based comparative study of Dempster-Shafer, logistic regression and artificial neural network models for landslide susceptibility mapping. Geocarto International, 32 (4), 367–385. doi:10.1080/10106049.2016.1140824
  • Chen, X. and Chen, W., 2021. GIS-based landslide susceptibility assessment using optimized hybrid machine learning methods. Catena, 196, 104833. doi:10.1016/j.catena.2020.104833
  • Climate-Data.org. 2020. Anambra climate. https://en.climate-data.org/africa/nigeria/anambra-344/ [Accessed 30 August 2020].
  • Das, I., et al., 2010. Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India). Geomorphology, 114 (4), 627–637. doi:10.1016/j.geomorph.2009.09.023
  • Dou, J., et al., 2015. Optimization of causative factors for landslide susceptibility evaluation using remote sensing and GIS data in parts of Niigata, Japan. PLoS One, 10 (7), e0133262. doi:10.1371/journal.pone.0133262
  • Dou, J., et al., 2019. Torrential rainfall-triggered shallow landslide characteristics and susceptibility assessment using ensemble data-driven models in the Dongjiang Reservoir Watershed, China. Natural Hazards, 97 (2), 579–609. doi:10.1007/s11069-019-03659-4
  • Egboka, B.C.E. and Nwankwor, G.I., 1985. Hydrogeological and geotechnical parameters as agents for gully-type erosion in the rainforest belt of Nigeria. Journal of African Earth Sciences, 3, 417–425.
  • Egbueri, J.C. and Igwe, O., 2020a. The impact of hydrogeomorphological characteristics on gullying processes in erosion-prone geological units in parts of southeast Nigeria. Geology, Ecology, and Landscapes. doi:10.1080/24749508.2020.1711637
  • Egbueri, J.C. and Igwe, O., 2020b. Development of a novel numerical indicator (DLPI) for assessing the detachability and liquefaction potentials of soils from erosion-prone areas. Modeling Earth Systems and Environment. doi:10.1007/s40808-020-00999-0
  • Egbueri, J.C., Igwe, O., and Nnamani, C.H., 2017. Assessment of the engineering properties and suitability of some tropical soils as backfill materials. International Journal of Trend in Scientific Research and Development, 2 (1), 590–605. doi:10.31142/ijtsrd7041
  • Emami, S.N., et al., 2020. A comparative study on machine learning modeling for mass movement susceptibility mapping (a case study of Iran). Bulletin of Engineering Geology and the Environment, 79 (10), 5291–5308. doi:10.1007/s10064-020-01915-7
  • Erzin, Y. and Cetin, T., 2013. The prediction of the critical factor of safety of homogeneous finite slopes using neural networks and multiple regressions. Computers & Geosciences, 51, 305–313. doi:10.1016/j.cageo.2012.09.003
  • FAO (Food and Agriculture Organization of the United Nations), 2019. Soil erosion: the greatest challenge to sustainable soil management. Rome: Food and Agriculture Organization of the United Nations, 100pp.
  • Gholami, V., Sahour, H., and Amri, M.A.H., 2021. Soil erosion modeling using erosion pins and artificial neural networks. Catena, 196, 104902. doi:10.1016/j.catena.2020.104902
  • Hanna, A.M., Ural, D., and Saygili, G., 2007. Evaluation of liquefaction potential of soil deposits using artificial neural networks. Engineering Computations, 24 (1), 5–16. doi:10.1108/02644400710718547
  • Hao, X., et al., 2008. Soil density and porosity, Chap 57. Carter, M.R., and Gregorich, E.G. ed. In: Soil sampling and methods of analysis. Boca Raton: CRC Press, 743–759.
  • Hjulstrom, F., 1935. Studies of the morphological activity of rivers as illustrated by the River Fyris. Bulletin of the Geological Institution of the University of Upsala, 25, 221–527.
  • Hof, S. 2014. Mapping soil variability with a decision tree modelling approach in the Northern Highlands of Ethiopia. MSc Thesis Report, Wageningen University.
  • Igbokwe, J.I., et al., 2008. Mapping and monitoring of the impact of gully erosion in southeastern Nigeria with satellite remote sensing and geographic information system. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 865–871.
  • Ige, O.O., et al., 2019. Liquefaction, landslide and slope stability analyses of soils: a case study of soils from part of Kwara, Kogi and Anambra states of Nigeria. Journal of Engineering and Applied Sciences, 14 (13), 4387–4404. doi:10.36478/jeasci.2019.4387.4404
  • Ighalo, J.O., Adeniyi, A.G., and Marques, G., 2020. Application of linear regression algorithm and stochastic gradient descent in a machine-learning environment for predicting biomass higher heating value. Biofuels, Bioproducts and Biorefining, 14 (6), 1286–1295. doi:10.1002/bbb.2140
  • Igwe, C.A., 2012. Gully erosion in southeastern Nigeria: role of soil properties and environmental factors. In: G. Danilo, ed. Research on soil erosion. London: InTech. 157–171. doi:10.5772/51020
  • Igwe, O. and Egbueri, J.C., 2018. The characteristics and the erodibility potentials of soils from different geologic formations in Anambra state, Southeastern Nigeria. Journal of the Geological Society of India, 92 (4), 471–478. doi:10.1007/s12594-018-1044-1
  • Kalantar, B., et al., 2018. Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomatics, Natural Hazards and Risk, 9 (1), 49–69. doi:10.1080/19475705.2017.1407368
  • Kalinski, M.E., 2011. Soil Mechanics Lab Manual. 2nd. Hoboken: Wiley, p193.
  • Khandelwal, M., et al., 2017. An expert system based on hybrid ICA-ANN technique to estimate macerals contents of Indian coals. Environmental Earth Sciences, 76 (11), 399. doi:10.1007/s12665-017-6726-2
  • Khandelwal, M., et al., 2018. Implementing an ANN model optimized by genetic algorithm for estimating cohesion of limestone samples. Engineering with Computers, 34 (2), 307–317. doi:10.1007/s00366-017-0541-y
  • Lal, R., 1990. Soil Erosion in the Tropics: principles and Management. New York: McGraw-Hill.
  • Lu, P. and Rosenbaum, M., 2003. Artificial neural networks and grey systems for the prediction of slope stability. Natural Hazards, 30 (3), 383–398. doi:10.1023/B:NHAZ.0000007168.00673.27
  • Masannat, Y.M., 1980. Development of piping erosion conditions in the Benson area, Arizona. Quarterly Journal of Engineering Geology and Hydrogeology, 13 (1), 53–61. doi:10.1144/GSL.QJEG.1980.013.01.04
  • Menard, S., 2000. Coefficients of determination for multiple logistic regression analysis. The American Statistician, 54 (1), 17–24.
  • Momeni, E., et al., 2014. Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN. Measurement, 57, 122–131. doi:10.1016/j.measurement.2014.08.007
  • Morgan, R.P.C., 2005. Soil erosion and conservation. 3rd. New York: Blackwell Science Ltd.
  • Nayebi, H., 2020. Advanced statistics for testing assumed casual relationships: multiple regression analysis path analysis logistic regression analysis. Switzerland AG: Springer Nature, 79–108. doi:10.1007/978-3-030-54754-7
  • Nebeokike, U.C., et al., 2020. Erodibility characteristics and slope stability analysis of geological units prone to erosion in Udi area, southeast Nigeria. Modeling Earth Systems and Environment, 6 (2), 1061–1074. doi:10.1007/s40808-020-00741-w
  • Nefeslioglu, H.A., et al., 2010. Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey. Mathematical Problems in Engineering, 2010, 1–15. doi:10.1155/2010/901095
  • Nguyen, K.A., et al., 2019. Predicting sheet and rill erosion of Shihmen Reservoir watershed in Taiwan using machine learning. Sustainability, 11 (13), 3615. doi:10.3390/su11133615
  • Nguyen, P.T., et al., 2020. Soft Computing ensemble models based on logistic regression for groundwater potential mapping. Applied Sciences, 10 (7), 2469. doi:10.3390/app10072469
  • Nhu, V., et al., 2020a. Comparison of support vector machine, Bayesian logistic regression, and alternating decision tree algorithms for shallow landslide susceptibility mapping along a mountainous road in the West of Iran. Applied Sciences, 10 (15), 5047. doi:10.3390/app10155047
  • Nhu, V., et al., 2020b. Landslide detection and susceptibility modeling on Cameron Highlands (Malaysia): a comparison between random forest, logistic regression and logistic model tree algorithms. Forests, 11 (8), 830. doi:10.3390/f11080830
  • Nwajide, C.S., 2013. Geology of Nigeria’s sedimentary basins. Lagos: CSS Press.
  • Nwankwo, G.I., Dike, C.E., and Iwuagwu, C.J., 1998. Piping, quick conditions and liquefaction as factors of gully erosion. A case study of Okwudor-Amucha Gully complex, Imo State, Nigeria. Journal of Mining and Geology, 34 (2), 225–230.
  • Obiadi, I.I., et al., 2014. Gully erosion in Anambra State, South East Nigeria: issues and solution. IJES, 2 (2), 796–804.
  • Oh, H.-J. and Lee, S., 2017. Shallow landslide susceptibility modeling using the data mining models artificial neural network and boosted tree. Applied Sciences, 7 (10), 1000. doi:10.3390/app7101000
  • Okagbue, C.O. and Ezechi, J.O., 1988. Geotechnical characteristics of soils susceptible to severe gullying in Eastern Nigeria. Bulletin of the International Association of Engineering Geology, 38 (1), 111. doi:10.1007/BF02590454
  • Okengwo, O.N., et al., 2015. Geological and geotechnical studies of gully erosion at Ekwulobia, Oko and Nanka towns, Southeastern Nigeria. EJGE, 20, 113–121.
  • Okon, A.N., Adewole, S.E., and Uguma, E.M., 2020. Artificial neural network model for reservoir petrophysical properties: porosity, permeability and water saturation prediction. Modeling Earth Systems and Environment. doi:10.1007/s40808-020-01012-4
  • Okorafor, O.O., Akinbile, C.O., and Adeyemo, A.J., 2018. Determination of soils erodibility factor (K) for selected sites in Imo State, Nigeria. Resources and Environment, 8 (1), 6–13. doi:10.5923/j.re.20180801.02
  • Okoyeh, E.I., et al., 2014. An assessment of the influences of surface and subsurface water level dynamics in the development of gullies in Anambra State, Southeastern Nigeria. Earth Interactions, 18 (4), 1–24. doi:10.1175/2012EI000488.1
  • Poesen, J., 1981. Rainwash experiments on the erodibility of loose sediments. Earth Surface Processes and Landforms, 6 (3–4), 285–307. doi:10.1002/esp.3290060309
  • Poudyal, C.P., 2012. Landslide susceptibility analysis using decision tree method, Phidim, Eastern Nepal. Bulletin of the Department of Geology, 15, 69–76. doi:10.3126/bdg.v15i0.7419
  • Pourghasemi, H.R., et al., 2019. Gully erosion spatial modelling: role of machine learning algorithms in selection of the best controlling factors and modelling process. Geoscience Frontiers. doi:10.1016/j.gsf.2020.03.005
  • Pradhan, B. and Lee, S., 2010a. Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environmental Modelling & Software, 25 (6), 747–759. doi:10.1016/j.envsoft.2009.10.016
  • Pradhan, B. and Lee, S., 2010b. Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environmental Earth Sciences, 60 (5), 1037–1054. doi:10.1007/s12665-009-0245-8
  • Qian, Z., et al., 2019. An artificial neural network approach to inhomogeneous soil slope stability predictions based on limit analysis methods. Soils and Foundations, 59 (2), 556–569. doi:10.1016/j.sandf.2018.10.008
  • Ray, A., et al., 2020. Stability prediction of Himalayan residual soil slope using artificial neural network. Natural Hazards, 103 (3), 3523–3540. doi:10.1007/s11069-020-04141-2
  • Riegel, R.P., et al., 2020. Assessment of susceptibility to landslides through geographic information systems and the logistic regression model. Natural Hazards, 103 (1), 497–511. doi:10.1007/s11069-020-03997-8
  • Sadhasivam, N., et al., 2020. Morphometric attributes‑based soil erosion susceptibility mapping in Dnyanganga watershed of India using individual and ensemble models. Environmental Earth Sciences, 79 (14), 360. doi:10.1007/s12665-020-09102-3
  • Sakellariou, M. and Ferentinou, M., 2005. A study of slope stability prediction using neural networks. Geotechnical and Geological Engineering, 23 (4), 419. doi:10.1007/s10706-004-8680-5
  • Schaid, D.J., et al., 1999. Discovery of cancer susceptibility genes: study designs, analytic approaches, and trends in technology. JNCI Monographs, 26, 1–16. doi:10.1093/oxfordjournals.jncimonographs.a024219
  • Shan, Y., Chen, S., and Zhong, Q., 2020. Rapid prediction of landslide dam stability using the logistic regression method. Landslides, 17 (12), 2931–2956. doi:10.1007/s10346-020-01414-6
  • Shidlovskaya, A., et al., 2016. Erodibility of soil above the groundwater level: some test results. E3S Web of Conferences, 9, 10011. doi:10.1051/e3sconf/20160910011
  • Talebi, H., et al., 2020. Towards geostatistical learning for the geosciences: a case study in improving the spatial awareness of spectral clustering. Mathematical Geosciences, 52 (8), 1035–1048. doi:10.1007/s11004-020-09867-0
  • Tom, I.U., Okon, A.N., and Okologume, W.C., 2020. Volumetric approach based DOE and ANN models for estimating reservoirs oil in place. International Journal of Scientific and Engineering Research, 11 (7), 873–883.
  • Tuncer, O.D. and Lohnes, C.G., 1977. Specific gravity of soils. The Journal of Geology, 75, 432–534.
  • Verma, A., et al., 2016. A hybrid FEM–ANN approach for slope instability pre-diction. Journal of the Institution of Engineers (India): Series A, 97 (3), 171–180. doi:10.1007/s40030-016-0168-9
  • Wagh, V., et al., 2018. Neural network modelling for nitrate concentration in groundwater of Kadava River basin, Nashik, Maharashtra, India. Groundwater for Sustainable Development, 7, 436–445. doi:10.1016/j.gsd.2017.12.012
  • Wagh, V.M., Panaskar, D.B., and Muley, A.A., 2017. Estimation of nitrate concentration in groundwater of Kadava river basin-Nashik district, Maharashtra, India by using artificial neural network model. Modeling Earth Systems and Environment, 3 (1), 36. doi:10.1007/s40808-017-0290-3
  • Wu, W., Dandy, G.C., and Maier, H.R., 2014. Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling. Environmental Modelling & Software, 54, 108–127. doi:10.1016/j.envsoft.2013.12.016
  • Yilmaz, I., 2010. The effect of the sampling strategies on the landslide susceptibility mapping by conditional probability and artificial neural networks. Environmental Earth Sciences, 60 (3), 505–519. doi:10.1007/s12665-009-0191-5
  • Zare, M., et al., 2013. Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arabian Journal of Geosciences, 6 (8), 2873–2888. doi:10.1007/s12517-012-0610-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.