1,003
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Artificial neural networks to predict deformation modulus of rock masses considering overburden stress

ORCID Icon, &
Pages 48-64 | Received 27 Jul 2021, Accepted 15 Nov 2021, Published online: 28 Nov 2021

References

  • Acitas, S., Aladag, C.H., and Senoglu, B., 2019. A new approach for estimating the parameters of Weibull distribution via particle swarm optimization: an application to the strengths of glass fiber data. Reliability Engineering and System Safety, 183, 116–127. doi:10.1016/j.ress.2018.07.024
  • Aladag, C.H., ed., 2017. Advances in time series forecasting. Vol. 2. Sharjah, U.A.E: Bentham Science Publishers Ltd.
  • Aladag, C.H., 2019. Architecture selection in neural networks by statistical and machine learning. Oriental Journal of Computer Science and Technology, 12 (3), 76–89. doi:10.13005/ojcst12.03.02.
  • Aladag, C.H., Kayabasi, A., and Gokceoglu, C., 2013. Estimation of pressuremeter modulus and limit pressure of clayey soils by various artificial neural network models. Neural Computing & Applications, 23 (2), 333–339. doi:10.1007/s00521-012-0900-y.
  • Alemdag, S., et al., 2016. Modeling deformation modulus of a stratified sedimentary rock mass using neural network, fuzzy inference and genetic programming. Engineering Geology, 203, 70–82. doi:10.1016/j.enggeo.2015.12.002
  • Alemdag, S., Gurocak, Z., and Gokceoglu, C., 2015. A simple regression-based approach to estimate deformation modulus of rock masses. Journal of African Earth Sciences, 110, 75–80. doi:10.1016/j.jafrearsci.2015.06.011
  • Asadizadeh, M. and Hossaini, M.F., 2016. Predicting rock mass deformation modulus by artificial intelligence approach based on dilatometer tests. Arabian Journal of Geosciences, 9 (2), Article No 96. doi:10.1007/s12517-015-2189-5.
  • Asrari, A.A., Shahriar, K., and Ataeepour, M., 2015. The performance of ANFIS model for prediction of deformation modulus of rock mass. Arabian Journal of Geosciences, 8 (1), 357–365. doi:10.1007/s12517-013-1097-9.
  • Barton, N., 2002. Some new Q-Value correlations to assist in rock masses for design of tunnel design. International Journal of Rock Mechanics and Mining Sciences, 39 (2), 185–216. doi:10.1016/S1365-1609(02)00011-4.
  • Bashari, A., Beiki, M., and Talebinejad, A., 2011. Estimation of deformation modulus of rock masses by using fuzzy clustering-based modelling. International Journal of Rock Mechanics and Mining Sciences, 48, 1224–1234. doi:10.1016/j.ijrmms.2011.09.017
  • Beiki, M., Bashari, A., and Majdi, A., 2010. Genetic programming approach for estimating the deformation modulus of rock mass using sensitivity analysis by neural network. International Journal of Rock Mechanics and Mining Sciences, 47, 1091–1103. doi:10.1016/j.ijrmms.2010.07.007
  • Bieniawski, Z.T., 1973. Engineering classification of rock masses. Transactions South African Institution of Civil Engineers, 15, 335–344.
  • Chun, B., et al., 2006. Correlation of deformation modulus by PMT with RMR and rock mass condition. Tunnelling and Underground Space Technology, 21 (3–4), 231–232. doi:10.1016/j.tust.2005.12.011.
  • Egrioglu, E., et al., 2015. Recurrent multiplicative neuron model artificial neural network for non-linear time series forecasting. Neural Processing Letters, 41 (2), 249–258. doi:10.1007/s11063-014-9342-0.
  • Fattahi, H., 2016. Indirect estimation of deformation modulus of an in situ rock mass: an ANFIS model based on grid partitioning, fuzzy c-means clustering and subtractive clustering. Geosciences Journal, 20 (5), 681–690. doi:10.1007/s12303-015-0065-7.
  • Feng, X. and Jimenez, R., 2015. Estimation of deformation modulus of rock masses based on Bayesian model selection and Bayesian updating approach. Engineering Geology, 199, 19–27. doi:10.1016/j.enggeo.2015.10.002
  • Galera, J.M., Alvarez, Z., and Bieniawski, Z.T., 2005. Evaluation of the deformation modulus of rock masses: comparison between pressure meter and dilatometer tests with RMR predictions. In: Proceedings ISP5-PRESSIO 2005 Paris, France. Gambin, Magnen, Mestat, and Baguelin, eds. LCPC Publication Paris.
  • Ghamgosar, M., Fahimifar, A., and Rasouli, V., 2010. Estimation of rock mass deformation modulus from laboratory experiments in Karun dam. In: Proceedings of the International Symposium of the International Society for Rock Mechanics. Zhao, Laboise, Dudt and Mathier, eds. Taylor & Francis Group, 805–808.
  • Gholamnejad, J., Bahaaddini, H., and Rastegar, M., 2013. Prediction of the deformation modulus of rock masses using artificial neural networks and regression methods. Journal of Mining and Environment, 4 (1), 35–43.
  • Gokceoglu, C., et al., 2009. A comparative study on indirect determination of degree of weathering of granites from some physical and strength parameters by two soft computing techniques. Materials Characterization, 60 (11), 1317–1327. doi:10.1016/j.matchar.2009.06.006.
  • Gokceoglu, C., 2017. Deformation modulus (Em) of rock masses: recent developments. Proceedings of the ISRM 3rd Nordic Rock Mechanics Symposium - NRMS 2017, Helsinki, Finland, October. ISRM-NRMS-2017-003.
  • Gokceoglu, C., Sonmez, H., and Kayabasi, A., 2003. Prediction the deformation moduli of rock masses. International Journal of Rock Mechanics and Mining Sciences, 40, 703–712. doi:10.1016/S1365-1609(03)00062-5
  • Gokceoglu, C., Yesilnacar, E., Sonmez, H., & Kayabasi, A. (2004). A neuro-fuzzy model for modulus of deformation of jointed rock masses. Computers and Geotechnics, 31(5), 375–383.
  • Grimstad, E. and Barton, N., 1993. Updating the Q-System for NMT. In: Proceedings of the International Symposium on Sprayed Concrete-Modern Use of Wet Mix Sprayed Concrete for underground Support. Oslo: Norwegian Concrete Association.
  • Gundogdu, O., et al., 2016. Multiplicative neuron model artificial neural network based on Gaussian activation function. Neural Computing & Applications, 27 (4), 927–935. doi:10.1007/s00521-015-1908-x.
  • Hoek, E. and Brown, E.T., 1997. Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Sciences, 34 (8), 1165–1186. doi:10.1016/S1365-1609(97)80069-X.
  • Hoek, E. and Diederichs, M., 2006. Empirical estimation of rock mass modulus. International Journal of Rock Mechanics and Mining Sciences, 43, 203–215. doi:10.1016/j.ijrmms.2005.06.005
  • Isik, N.S., Ulusay, R., and Doyuran, V., 2008. Deformation modulus of heavily jointed-sheared and blocky greywackes by pressuremeter tests: numerical, experimental and empirical assessments. Engineering Geology, 101, 269–282. doi:10.1016/j.enggeo.2008.06.004
  • Kayabasi, A., Gokceoglu, C., and Ercanoglu, M., 2003. Estimating the deformation modulus rock masses: a comparative study. International Journal of Rock Mechanics and Mining Sciences, 40, 55–63. doi:10.1016/S1365-1609(02)00112-0
  • Majdi, A. and Beiki, M., 2010. Evolving neural network using a genetic algorithm for predicting the deformation modulus of rock masses. International Journal of Rock Mechanics and Mining Sciences, 47 (2), 246–253. doi:10.1016/j.ijrmms.2009.09.011.
  • Martins, F.F. and Miranda, T.F.S., 2012. Estimation of the rock deformation modulus and RMR based on data mining techniques. Geotechnical and Geological Engineering, 30, 787–801. doi:10.1007/s10706-012-9498-1
  • Mitri, H.S., Edrissi, R., and Henning, J., 1994. Finite element modeling of cable bolted stopes in hard rock ground mines. In: Presented at the SME annual meeting. New Mexico, Albuquerque, 94–116.
  • Mohammadi, H. and Rahmannejad, R., 2010. The estimation of deformation modulus using regression and artificial neural network analysis. The Arabian Journal for Science and Engineering, 35, 205–217.
  • Nejati, H.R., et al., 2014. On the use of the RMR system for estimation of rock mass deformation modulus. Bulletin of Engineering Geology and the Environment, 73, 531–540. doi:10.1007/s10064-013-0522-3
  • Nicholson, G.A. and Bieniawski, Z.T., 1990. A nonlinear deformation modulus based on rock mass classification. International Journal of Mining and Geological Engineering, 8, 181–202. doi:10.1007/BF01554041
  • Palmstrom, A., 2000. Recent developments in rock support estimates by the RMi. Journal of Rock Mechanics and Tunnelling Technology, 6 (1), 1–19.
  • Ramamurthy, T., 2004. A geo-engineering classification for rocks and rock masses. International Journal of Rock Mechanics and Mining Sciences, 41, 89–101. doi:10.1016/S1365-1609(03)00078-9
  • Read, S.A.L., Richards, L.R., and Perrin, N.D., 1999. Applicability of the Hoek–Brown failure criterion to New Zealand greywacke rocks. In: G. Vouille, and P. Berest (9th ISRM Congress), eds. Proceedings of the nineth international congress on rock mechanics. Paris, 655–660 / ISRM-9CONGRESS-1999-133. August 2.
  • Serafim, J.L. and Pereira, J.P., 1983. Considerations of the geomechanics considerations of Bieniawski. In: Proceedings of the International Symposium on Engineering Geology and Underground Construction, LNEC. Lisbon, Portugal, 33–42.
  • Sevgen, E., et al., 2019. A novel performance assessment approach using photogrammetric techniques for landslide susceptibility mapping with logistic regression, ANN and random forest. Sensors, 19 (18), 3940. doi:10.3390/s19183940.
  • Shen, J., Karakus, M., and Xu, C., 2012. A comparative study for empirical equation in estimating deformation modulus of rock masses. Tunneling and Underground Space Technology, 32, 245–250. doi:10.1016/j.tust.2012.07.004
  • Sonmez, H., et al., 2006. Estimating of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation. International Journal of Rock Mechanics and Mining Sciences, 43, 224–235. doi:10.1016/j.ijrmms.2005.06.007
  • Sonmez, H., Gokceoglu, C., and Ulusay, R., 2004. Indirect determination of the modulus of deformation of rock masses based on the GSI system. International Journal of Rock Mechanics and Mining Sciences, 41 (5), 849–857. doi:10.1016/j.ijrmms.2003.01.006.
  • Tokgozoglu, K., 2021. Investigating the effect of depth on modulus of deformation of rock masses with low strength. PhD Thesis, Hacettepe University, 190p ( unpublished, in Turkish).
  • Tokgozoglu, K. and Gokceoglu, C., 2021. Effect of overburden stress on the deformation modulus of rock masses: an empirical study. In Review.
  • Verman, M., et al., 1997. Effect of tunnel depth on modulus of deformation of rock mass. Rock Mechanics and Rock Engineering, 30, 121–127. doi:10.1007/BF01047388
  • Yagiz, S., et al., 2009. Application of two non-linear prediction tools to the estimation of tunnel boring machine performance. Engineering Applications of Artificial Intelligence, 22 (4–5), 808–814. doi:10.1016/j.engappai.2009.03.007.
  • Yagiz, S., Sezer, E.A., and Gokceoglu, C., 2012. Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks. International Journal for Numerical and Analytical Methods in Geomechanics, 36 (12), 1636–1650. doi:10.1002/nag.1066.
  • Yilmazer, E. and Kocaman, S., 2020. A mass appraisal assessment study using machine learning based on multiple regression and random forest. Land Use Policy, 99, 104889. doi:10.1016/j.landusepol.2020.104889
  • Zhang, L. and Einstein, H.H., 2004. Using RQD to estimate the deformation modulus of rock masses. International Journal of Rock Mechanics and Mining Sciences, 41, 337–341. doi:10.1016/S1365-1609(03)00100-X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.