165
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Lining pressure for circular tunnels in two layered clay with anisotropic undrained shear strength

& ORCID Icon
Pages 91-104 | Received 18 May 2021, Accepted 18 Nov 2021, Published online: 24 Dec 2021

References

  • Arthur, J.R.F. and Menzies, B., 1972. Inherent anisotropy in a sand. Geotechnique, 22 (1), 115–128. doi:10.1680/geot.1972.22.1.115.
  • Atkinson, J.H. and Potts, D.M., 1977. Stability of a shallow circular tunnel in cohesionless soil. Geotechnique, 27 (2), 203–215. doi:10.1680/geot.1977.27.2.203.
  • Bishop, A.W., 1966. The strength of soils as engineering materials. Geotechnique, 16 (2), 91–130. doi:10.1680/geot.1966.16.2.91.
  • Casagrande, A. and Carillo, N., 1944. Shear failure of anisotropic soils. Contributions to Soil Mechanics (BSCE), 1941–1953 (4), 122–135.
  • Chambon, P. and Corte, J.F., 1994. Shallow tunnels in cohesionless soil: stability of tunnel face. Journal of Geotechnical Engineering, 120 (7), 1148–1165. doi:10.1061/(ASCE)0733-9410(1994)120:7(1148).
  • Davis, E.H., et al., 1980. The stability of shallow tunnels and underground openings in cohesive material. Geotechnique, 30 (4), 397–416. doi:10.1680/geot.1980.30.4.397.
  • Davis, E.H. and Christian, J.T., 1971. Bearing capacity of anisotropic cohesive soil. Journal of the Soil Mechanics and Foundation Division, 97 (5), 753‐769.
  • Drucker, D.C., 1953. Coulomb friction, plasticity and limit loads. Transactions American Society of Mechanical Engineers, 76, 71–74.
  • Du, D., Dias, D., and Yang, X., 2018. Analysis of earth pressure for shallow square tunnels in anisotropic and non-homogeneous soils. Computers and Geotechnics, 104, 226–236. doi:10.1016/j.compgeo.2018.08.022
  • Duncan, J.M. and Seed, H.B., 1966. Anisotropy and stress reorientation in clay. Journal of the Soil Mechanics and Foundation Division, ASCE, 92 (SM5), 21–50. doi:10.1061/JSFEAQ.0000909.
  • Hagiwara, T., et al., 1999. The effect of overlying strata on the distribution of ground movements induced by tunnelling in clay. Soil and Foundation, 39 (3), 63–73. doi:10.3208/sandf.39.3_63.
  • Huang, M., et al., 2018. Upper bound solutions for face stability of circular tunnels in non-homogeneous and anisotropic clays. Computers and Geotechnics, 98, 189–196. doi:10.1016/j.compgeo.2018.02.015.
  • Hvorslev, M.J., 1960. Physical components of shear strength of saturated clays. In: Proceedings, ASCE Research Conference on Shear Strength of Cohesive Soils. Boulder, CO, 169–273.
  • Jakobson, B., 1955. Isotropy of clays. Geotechnique, 5 (1), 23–28. doi:10.1680/geot.1955.5.1.23.
  • Keawsawasvong, S., 2021. Bearing capacity of conical footings on clays considering combined effects of anisotropy and non-homogeneity. Ships and Offshore Structures, 1–12 doi:10.1080/17445302.2021.1987110.
  • Keawsawasvong, S. and Likitlersuang, S., 2021. Undrained stability of active trapdoors in two-layered clays. Underground Space, 6 (4), 446–454. doi:10.1016/j.undsp.2020.07.002.
  • Keawsawasvong, S. and Ukritchon, B., 2021a. Undrained stability of plane strain active trapdoors in anisotropic and non-homogeneous clays. Tunnelling and Underground Space Technology, 107, 103628. doi:10.1016/j.tust.2020.103628
  • Keawsawasvong, S. and Ukritchon, B., 2021b. Design equation for stability of a circular tunnel in anisotropic and heterogeneous clay. Underground Space. doi:10.1016/j.undsp.2021.05.003.
  • Keawsawasvong, S., Yoonirundorn, K., Senjuntichai, T., 2021. Pullout capacity factor for cylindrical suction caissons in anisotropic clays based on anisotropic undrained shear failure criterion. Transportation Infrastructure Geotechnology, 8,629–644. doi:10.1007/s40515-021-00154-x.
  • Klar, A., Osman, A.S., and Bolton, M., 2007. 2D and 3D upper bound solutions for tunnel excavation using ‘elastic’flow fields. International Journal for Numerical and Analytical Methods in Geomechanics, 31 (12), 1367–1374. doi:10.1002/nag.597.
  • Krabbenhøft, K., et al., 2019. AUS: anisotropic undrained shear strength model for clays. International Journal for Numerical and Analytical Methods in Geomechanics, 43 (17), 2652–2666. doi:10.1002/nag.2990.
  • Kumar, B. and Sahoo, J.P., 2020a. Support pressure for circular tunnels in two layered undrained clay. Journal of Rock Mechanics and Geotechnical Engineering, 12 (1), 135–148. doi:10.1016/j.jrmge.2019.04.007.
  • Kumar, B. and Sahoo, J.P., 2020b. Support pressure for circular tunnels advanced below water bodies. Tunnelling and Underground Space Technology, 97, 103214. doi:10.1016/j.tust.2019.103214
  • Leca, E. and Dormieux, L., 1990. Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material. Géotechnique, 40 (4), 581–606. doi:10.1680/geot.1990.40.4.581.
  • Liang, Q., Yao, C., and Xu, J., 2017. Upper bound stability analysis of shield tunnel face in nonhomogeneous and anisotropic soils. Indian Geotechnical Journal, 47 (3), 338–348. doi:10.1007/s40098-017-0224-z.
  • Lo, K.Y., 1965. Stability of slopes in anisotropic soils. Journal of the Soil Mechanics and Foundation Division, ASCE, 91 (SM4), 85–106. doi:10.1061/JSFEAQ.0000778.
  • Lo, K.Y. and Milligan, V., 1967. Shear strength properties of two stratified clays. Journal of the Soil Mechanics and Foundation Division, ASCE, 93 (SM1), 1–15.
  • Makrodimopoulos, A. and Martin, C.M., 2006. Lower bound limit analysis of cohesive‐frictional materials using second‐order cone programming. International Journal for Numerical Methods in Engineering, 66 (4), 604–634. doi:10.1002/nme.1567.
  • MATLAB, 2015. [Computer software]. Natick, MA: MathWorks.
  • Mosek, A., 2015. The MOSEK optimization toolbox for MATLAB manual. Version 7.1 (Revision 28). Copenhagen, Denmark.
  • Nunes, M.A. and Meguid, M.A., 2009. A study on the effects of overlying soil strata on the stresses developing in a tunnel lining. Tunnelling and Underground Space Technology, 24 (6), 716–722. doi:10.1016/j.tust.2009.04.002.
  • Oda, M., 1972. Initial fabrics and their relations to mechanical properties of granular material. Soils and Foundations, 12 (1), 17–36. doi:10.3208/sandf1960.12.17.
  • Osman, A.S., Mair, R.J., and Bolton, M.D., 2006. On the kinematics of 2D tunnel collapse in undrained clay. Geotechnique, 56 (9), 585–595. doi:10.1680/geot.2006.56.9.585.
  • Pan, Q. and Dias, D., 2016. Face stability analysis for a shield-driven tunnel in anisotropic and nonhomogeneous soils by the kinematical approach. International Journal of Geomechanics, 16 (3), 04015076. doi:10.1061/(ASCE)GM.1943-5622.0000569.
  • Sahoo, J.P. and Kumar, B., 2019a. Stability of circular tunnels in clay with an overlay of sand. International Journal of Geomechanics, 19 (3), 06018039. doi:10.1061/(ASCE)GM.1943-5622.0001360.
  • Sahoo, J.P. and Kumar, B., 2019b. Support pressure for stability of circular tunnels driven in granular soil under water table. Computers and Geotechnics, 109, 58–68. doi:10.1016/j.compgeo.2019.01.005
  • Sahoo, J.P. and Kumar, J., 2013. Stability of long unsupported twin circular tunnels in soils. Tunnelling and Underground Space Technology, 38, 326–335. doi:10.1016/j.tust.2013.07.005
  • Sahoo, J.P. and Kumar, J., 2014. Stability of a circular tunnel in presence of pseudostatic seismic body forces. Tunnelling and Underground Space Technology, 42, 264–276. doi:10.1016/j.tust.2014.03.003
  • Sahoo, J.P. and Kumar, J., 2018. Required lining pressure for the stability of twin circular tunnels in soils. International Journal of Geomechanics, 18 (7), 04018069. doi:10.1061/(ASCE)GM.1943-5622.0001196.
  • Sloan, S.W., 1988. Lower bound limit analysis using finite elements and linear programming. International Journal for Numerical and Analytical Methods in Geomechanics, 12 (1), 61–77. doi:10.1002/nag.1610120105.
  • Sloan, S.W. and Assadi, A., 1991. Undrained stability of a square tunnel in a soil whose strength increases linearly with depth. Computers and Geotechnics, 12 (4), 321–346. doi:10.1016/0266-352X(91)90028-E.
  • Ukritchon, B. and Keawsawasvong, S., 2018. Lower bound limit analysis of an anisotropic undrained strength criterion using second‐order cone programming. International Journal for Numerical and Analytical Methods in Geomechanics, 42 (8), 1016–1033. doi:10.1002/nag.2781.
  • Ukritchon, B. and Keawsawasvong, S., 2019a. Three-dimensional lower bound finite element limit analysis of an anisotropic undrained strength criterion using second-order cone programming. Computers and Geotechnics, 106, 327–344. doi:10.1016/j.compgeo.2018.11.010
  • Ukritchon, B. and Keawsawasvong, S., 2019b. Stability of retained soils behind underground walls with an opening using lower bound limit analysis and second-order cone programming. Geotechnical and Geological Engineering, 37 (3), 1609–1625. doi:10.1007/s10706-018-0710-9.
  • Ukritchon, B. and Keawsawasvong, S., 2019c. Lower bound solutions for undrained face stability of plane strain tunnel headings in anisotropic and non-homogeneous clays. Computers and Geotechnics, 112, 204–217. doi:10.1016/j.compgeo.2019.04.018
  • Ukritchon, B. and Keawsawasvong, S., 2020a. Undrained lower bound solutions for end bearing capacity of shallow circular piles in non‐homogeneous and anisotropic clays. International Journal for Numerical and Analytical Methods in Geomechanics, 44 (5), 596–632. doi:10.1002/nag.3018.
  • Ukritchon, B. and Keawsawasvong, S., 2020b. Undrained stability of unlined square tunnels in clays with linearly increasing anisotropic shear strength. Geotechnical and Geological Engineering, 38 (1), 897–915. doi:10.1007/s10706-019-01023-8.
  • Wilson, D.W., et al., 2011. Undrained stability of a circular tunnel where the shear strength increases linearly with depth. Canadian Geotechnical Journal, 48 (9), 1328–1342. doi:10.1139/t11-041.
  • Wong, R.K.S. and Arthur, J.R.F., 1985. Induced and inherent anisotropy in sand. Geotechnique, 35 (4), 471–481. doi:10.1680/geot.1985.35.4.471.
  • Xiong, H., et al., 2016. Experimental study of drained anisotropy of granular soils involving rotation of principal stress direction. European Journal of Environmental and Civil Engineering, 20 (4), 431–454. doi:10.1080/19648189.2015.1039662.
  • Yamada, Y. and Ishihara, K., 1979. Anisotropic deformation characteristics of sand under three dimensional stress conditions. Soil and Foundations, 19 (2), 79–94. doi:10.3208/sandf1972.19.2_79.
  • Yang, F., et al., 2015. Stability analysis of unlined elliptical tunnel using finite element upper-bound method with rigid translatory moving elements. Tunnelling and Underground Space Technology, 50, 13–22. doi:10.1016/j.tust.2015.06.005.
  • Yang, F. and Yang, J.S., 2010. Stability of shallow tunnel using rigid blocks and finite-element upper bound solutions. International Journal of Geomechanics, 10 (6), 242–247. doi:10.1061/(ASCE)GM.1943-5622.0000011.
  • Yang, L.T., et al., 2016. A laboratory study of anisotropic geomaterials incorporating recent micromechanical understanding. Acta Geotechnica, 11 (5), 1111–1129. doi:10.1007/s11440-015-0423-7.
  • Yodsomjai, W., et al., 2021b. Undrained stability of unsupported conical slopes in two-layered clays. Innovative Infrastructure Solutions, 6 (1), 1–17. doi:10.1007/s41062-020-00384-x.
  • Yodsomjai, W., Keawsawasvong, S., Senjuntichai, T., 2021a. Undrained stability of unsupported conical slopes in anisotropic clays based on anisotropic undrained shear failure criterion. Transportation Infrastructure Geotechnology, 8,557–568. doi:10.1007/s40515-021-00153-y.
  • Zhang, D.M., et al., 2015. Influence of multi-layered soil formation on shield tunnel lining behaviour. Tunnelling and Underground Space Technology, 47, 123–135. doi:10.1016/j.tust.2014.12.011.
  • Zhang, J., et al., 2016. Upper-bound stability analysis of dual unlined elliptical tunnels in cohesive-frictional soils. Computers and Geotechnics, 80, 283–289. doi:10.1016/j.compgeo.2016.08.023.
  • Zhang, J., et al., 2018. Upper-bound stability analysis of dual unlined horseshoe-shaped tunnels subjected to gravity. Computers and Geotechnics, 97, 103–110. doi:10.1016/j.compgeo.2018.01.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.