299
Views
5
CrossRef citations to date
0
Altmetric
Research Article

3D stability analysis of unsupported rectangular excavation under pseudo-static seismic body force

, ORCID Icon, & ORCID Icon
Pages 175-192 | Received 08 Nov 2021, Accepted 10 Dec 2021, Published online: 29 Dec 2021

References

  • Ali, A., et al., 2017. Probabilistic stability assessment using adaptive limit analysis and random fields. Acta Geotechnica, 12 (4), 937–948. doi:10.1007/s11440-016-0505-1
  • Beygi, M., et al., 2020a. Finite element limit analysis of the seismic bearing capacity of strip footing adjacent to excavation in c-Ø soil. Geomechanics and Geoengineering. doi:10.1080/17486025.2020.1728396
  • Bhattacharya, P. and Kumar, J., 2013. Seismic pullout capacity of vertical anchors in sand. Geomechanics and Geoengineering, 8 (3), 191–201. doi:10.1080/17486025.2012.714475
  • Bottero, A., et al., 1980. Finite element method and limit analysis theory for soil mechanics problem. Computer Methods in Applied Mechanics and Engineering, 22 (1), 131–149. doi:10.1016/0045-7825(80)90055-9
  • Britto, A.M. and Kusakabe, O., 1982. Stability of unsupported axisymmetric excavations in soft clay. Géotechnique, 32 (3), 261–270. doi:10.1680/geot.1982.32.3.261
  • Britto, A.M. and Kusakabe, O., 1983. Stability of axisymmetric excavations in clays. Journal of Geotechnical Engineering, 109 (5), 666–681. doi:10.1061/(asce)0733-9410(1983)109:5(666)
  • Butterfield, R., 2009. Dimensional analysis for geotechnical engineering. Géotechnique, 49 (2), 357–366. doi:10.1680/geot.1999.49.3.357
  • Chakraborty, D. and Kumar, J., 2014. Uplift resistance of long pipelines in the presence of seismic forces. Journal of Pipeline Systems Engineering and Practice, 5 (4), 06014003. doi:10.1061/(ASCE)PS.1949-1204.0000172
  • Chen, W.F., 1975. Limit analysis and soil plasticity. Amsterdam, The Netherlands: Elsevier.
  • Ciria, H., Peraire, J., and Bonet, J., 2008. Mesh adaptive computation of upper and lower bounds in limit analysis. International Journal for Numerical Methods in Engineering, 75 (8), 899–944. doi:10.1002/nme.2275
  • Davis, E.H., 1968. Theories of plasticity, failure of soil masses. In: I.K. Lee, ed. Soil mechanics selected topics. New York, USA: Elsevier.
  • Drucker, D.C., Prager, W., and Greenberg, H.J., 1952. Extended limit design theorems for continuous media. Quarterly of Applied Mathematics, 9 (4), 381–389. doi:10.1090/qam/45573
  • Graine, N., Hjiaj, M., and Krabbenhoft, K., 2021. 3D failure envelope of a rigid pile embedded in a cohesive soil using finite element limit analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 45 (2), 265–290. doi:10.1002/nag.3152
  • Griffiths, D.V. and Koutsabeloulis, N., 1985. Finite element analysis of vertical excavations. Computers and Geotechnics, 1 (3), 221–235. doi:10.1016/0266-352x(85)90025-4
  • Hatanaka, M. and Uchida, A., 1996. Empirical correlation between penetration resistance and internal friction angle of sandy soils. Soils and Foundations, 36 (4), 1–9. doi:10.3208/sandf.36.4_1
  • Janbu, N., 1954. Stability analysis of slopes with dimensionless parameters. Harvard University Soil Mechanics: Ser, 46, 1–81.
  • Keawsawasvong, S. and Ukritchon, B., 2017. Stability of unsupported conical excavations in non-homogeneous clays. Computers and Geotechnics, 81, 125–136. doi:10.1016/j.compgeo.2016.08.007
  • Khatri, V.N. and Kumar, J., 2010. Stability of an unsupported vertical circular excavation in clays under undrained condition. Computers and Geotechnics, 37 (3), 419–424. doi:10.1016/j.compgeo.2009.11.001
  • Krabbenhøft, K., et al., 2019. AUS: anisotropic undrained shear strength model for clays. International Journal for Numerical and Analytical Methods in Geomechanics, 43 (17), 2652–2666. doi:10.1002/nag.2990
  • Kumar, J. and Chakraborty, D., 2012. Stability numbers for an unsupported vertical circular excavation in c-Ø soil. Computers and Geotechnics, 39, 79–84. doi:10.1016/j.compgeo.2011.08.002
  • Kumar, J., Chakraborty, M., and Sahoo, J.P., 2014. Stability of unsupported vertical circular excavations. Journal of Geotechnical and Geoenvironmental Engineering, 140 (7), 04014028. doi:10.1061/(ASCE)GT.1943-5606.0001118
  • Lai, V.Q., et al., 2021. Limit analysis solutions for stability factor of unsupported conical slopes in clays with heterogeneity and anisotropy. International Journal of Computational Materials Science and Engineering. doi:10.1142/S2047684121500305
  • Li, A.J., et al., 2019. Seismic slope stability evaluation considering rock mass disturbance varying in the slope. KSCE Journal of Civil Engineering, 23 (3), 1043–1054. doi:10.1007/s12205-019-0963-8
  • Li, A.J., Lyamin, A.V., and Merifield, R.S., 2009. Seismic rock slope stability charts based on limit analysis methods. Computers and Geotechnics, 36 (1–2), 135–148. doi:10.1016/j.compgeo.2008.01.004
  • Lukkunaprasit, P., et al., 2016. Performance of structures in the Mw 6.1 Mae Lao earthquake in Thailand on may 5, 2014 and implications for future construction. Journal of Earthquake Engineering, 20 (2), 219–242. doi:10.1080/13632469.2015.1051636
  • Luo, W., et al., 2019. Seismic bearing capacity of strip footings on cohesive soil slopes by using adaptive finite element limit analysis. Advances in Civil Engineering, 2019, 4548202. doi:10.1155/2019/4548202
  • Martin, C.M., 2011. The use of adaptive finite element limit analysis to reveal slip-line fields. Géotechnique Letters, 1 (2), 23–29. doi:10.1680/geolett.11.00018
  • Mase, L.Z., et al., 2020b. Local site investigation of liquefied soils caused by earthquake in Northern Thailand. Journal of Earthquake Engineering, 24 (7), 1181–1204. doi:10.1080/13632469.2018.1469441
  • Mase, L.Z. and Likitlersuang, S., 2021. Implementation of seismic ground response analysis to estimate liquefaction potential in Northern Thailand. Indonesian Journal of Geoscience, 8 (3), 371–383. doi:10.17014/ijog.8.3.329-341
  • Mase, L.Z., Likitlersuang, S., and Tobita, T., 2018. Analysis of seismic ground response caused during strong earthquake in Northern Thailand. Soil Dynamics and Earthquake Engineering, 114, 113–126. doi:10.1016/j.soildyn.2018.07.006
  • Mase, L.Z., Likitlersuang, S., and Tobita, T., 2020a. Verification of liquefaction potential during the strong earthquake at the border of Thailand-Myanmar. Journal of Earthquake Engineering, 1–28. doi:10.1080/13632469.2020.1751346
  • National Earthquake Hazards Reduction Program (NEHRP), 1998. Recommended provisions for seismic regulation for new building and other structure, 1997 edition, part 1-provisions, part 2-commentary. In: FEMA. Vol. 302, 1–720. Washington, WA: Federal Emergency Management Agency.
  • Nozu, A., et al., 1997. Relation between seismic coefficient and peak ground acceleration estimated from attenuation relations. No.893, Japan: Technical note of the Port and Harbour Research Institute. (in Japanese).
  • OptumCE OptumG3 (2020). Copenhagen, Denmark: optum Computational Engineering. See https://optumce.com/. Accessed 1 Dec 2020
  • Pastor, J., Thai, T.-H., and Francescato, P., 2000. New bounds for the height limit of a vertical slope. International Journal for Numerical and Analytical Methods in Geomechanics, 24(24), 165–182, 10.1002/(SICI)1096-9853(200002)24:2<165::AID-NAG62>3.0.CO;2-A, Geomech;
  • Pastor, J. and Turgeman, S., 1982. Limit analysis in axisymmetrical problems: numerical determination of complete statical solutions. International Journal of Mechanical Sciences, 24 (2), 95–117. https://doi.org/10.1016/0020-7403(82)90041-8. 10.1016/0020-7403(82)90041-8.
  • Sahoo, J.P. and Kumar, J., 2012. Seismic stability of a long unsupported circular tunnel. Computers and Geotechnics, 44, 109–115. doi:10.1016/j.compgeo.2012.03.015
  • Sahoo, J.P. and Kumar, J., 2014. Stability of a circular tunnel in presence of pseudostatic seismic body forces. Tunnelling and Underground Space Technology, 42, 264–276. doi:10.1016/j.tust.2014.03.003
  • Schmüdderich, C., Tschuchnigg, F., and Wichtmann, T., 2019. Rigorous lower and upper bounds for the 3D passive earth pressure problem. Geotechnique Letters, 10 (2), 110. doi:10.1680/jgele.19.00110
  • Shiau, J. and Al-Asadi, F., 2020a. Determination of critical tunnel heading pressures using stability factors. Computers and Geotechnics, 119, 103345. doi:10.1016/j.compgeo.2019.103345
  • Shiau, J., Lee, J.S., and Al-Asadi, F., 2021. Three-dimensional stability analysis of active and passive trapdoors. Tunnelling and Underground Space Technology, 107, 103635. doi:10.1016/j.tust.2020.103635
  • Sloan, S.W., 2013. Geotechnical stability analysis. Géotechnique, 63 (7), 531–572. https://doi.org/10.1680/geot.12.RL.001. 10.1680/geot.12.RL.001.
  • Sukkarak, R., et al., 2021. Liquefaction analysis of sandy soil during strong earthquake in Northern Thailand. Soils and Foundations, 61 (5), 1302–1318. doi:10.1016/j.sandf.2021.07.003
  • Tanapalungkorn, W., et al., 2020. Verification of attenuation models based on strong ground motion data in Northern Thailand. Soil Dynamics and Earthquake Engineering, 133, 106145. doi:10.1016/j.soildyn.2020.106145
  • Taylor, D.W., 1948. Fundamental of soil mechanics. New York: Wiley.
  • Ukritchon, B. and Keawsawasvong, S., 2018a. A new design equation for drained stability of conical slopes in cohesive-frictional soils. Journal of Rock Mechanics and Geotechnical Engineering, 10 (2), 358–366. doi:10.1016/j.jrmge.2017.10.004
  • Ukritchon, B. and Keawsawasvong, S., 2018b. Three-dimensional lower bound finite element limit analysis of Hoek-Brown material using semidefinite programming. Computers and Geotechnics, 104, 248–270. doi:10.1016/j.compgeo.2018.09.002
  • Ukritchon, B. and Keawsawasvong, S., 2019. Three-dimensional lower bound finite element limit analysis of an anisotropic undrained strength criterion using second-order cone programming. Computers and Geotechnics, 106, 327–344. doi:10.1016/j.compgeo.2018.11.010
  • Ukritchon, B., Yoang, S., and Keawsawasvong, S., 2020. Undrained stability of unsupported rectangular excavations in non-homogeneous clays. Computers and Geotechnics, 117, 103281. doi:10.1016/j.compgeo.2019.103281
  • Yodsomjai, W., et al., 2021c. Undrained stability of unsupported conical slopes in two-layered clays. Innovative Infrastructure Solutions, 6 (1), 15. doi:10.1007/s41062-020-00384-x
  • Yodsomjai, W., Keawsawasvong, S., and Likitlersuang, S., 2021a. Stability of unsupported conical slopes in Hoek-Brown rock masses. Transportation Infrastructure Geotechnology, 8 (2), 279–295. doi:10.1007/s40515-020-00137-4
  • Yodsomjai, W., Keawsawasvong, S., and Senjuntichai, T., 2021b. Undrained stability of unsupported conical slopes in anisotropic clays based on anisotropic undrained shear failure criterion. Transportation Infrastructure Geotechnology, 8(4), 557–568. doi:10.1007/s40515-021-00153-y
  • Yu, H., et al., 1998. Limit analysis versus limit equilibrium for slope stability. Journal of Geotechnical and Geoenvironmental Engineering, 1 (1), 1–11. doi:10.1061/(ASCE)1090-0241(1998)124:1(1)
  • Zhang, R., et al., 2020. Seismic bearing capacity of strip footings placed near c-Ø soil slopes. Soil Dynamics and Earthquake Engineering, 136, 106221. doi:10.1016/j.soildyn.2020.106221
  • Zhou, H., et al., 2020. Plasticity solution for the limit vertical pressure of a single rigid pile with a pile cap in soft soil. Computers and Geotechnics, 117, 103260. doi:10.1016/j.compgeo.2019.103260
  • Zhou, Y., et al., 2019. Seismic stability of earth slopes with tension crack. Frontiers of Structural and Civil Engineering, 13 (4), 950–964. doi:10.1007/s11709-019-0529-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.