359
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Prediction of unconfined compressive strength and California bearing capacity of cement- or lime-pozzolan-stabilised soil admixed with crushed stone waste

, ORCID Icon, &
Pages 272-283 | Received 20 Jul 2021, Accepted 04 Feb 2022, Published online: 21 Feb 2022

References

  • Andavan, S. and Pagadala, V.K., 2020. A study on soil stabilization by addition of fly ash and lime. Materials Today: Proceedings, 22, 1125–1129. doi:10.1016/j.matpr.2019.11.323
  • Armaghani, D.J., et al., 2016. Prediction of the strength and elasticity modulus of granite through an expert artificial neural network. Arabian Journal of Geosciences, 9 (1), 1–16. doi:10.1007/s12517-015-2057-3
  • Aziz, M., Saleem, M., and Irfan, M., 2015. Engineering behavior of expansive soils treated with rice husk ash. Geomechanics and Engineering, 8 (2), 173–186. doi:10.12989/gae.2015.8.2.173
  • Baldovino, J.J.A., et al., 2021. Strength, durability, and microstructure of geopolymers based on recycled-glass powder waste and dolomitic lime for soil stabilization. Construction and Building Materials, 271, 121874. doi:10.1016/j.conbuildmat.2020.121874
  • Beeghly, J.H., and Schrock, M. (2009) Dredge material stabilization using the pozzolanic or sulfo-pozzolanic reaction of lime by-products to make an engineered structural fill. International Journal of Soil, Sediment and Water, 3 (1), 6.
  • Bensaifi, E., et al., 2019. Influence of crushed granulated blast furnace slag and calcined eggshell waste on mechanical properties of a compacted marl. Transportation Geotechnics, 20, 100244. doi:10.1016/j.trgeo.2019.100244
  • Cabalar, A.F., 2011. Direct shear tests on waste tires-sand mixtures. Geotechnical and Geological Engineering, 29 (4), 411–418. doi:10.1007/s10706-010-9386-5.
  • Cheng, Y., et al., 2018. Engineering and mineralogical properties of stabilized expansive soil compositing lime and natural pozzolans. Construction and Building Materials, 187, 1031–1038. doi:10.1016/j.conbuildmat.2018.08.061
  • Chouhan, H.S., et al., 2020. Investigating use of dimensional limestone slurry waste as fine aggregate in mortar. Environment, Development and Sustainability, 22 (3), 2223–2245. doi:10.1007/s10668-018-0286-9
  • Cikmit, A.A., et al. 2019. Particle-size effect of basic oxygen furnace steel slag in stabilization of dredged marine clay. Soils and Foundations, 59 (5), 1385–1398. doi:10.1016/j.sandf.2019.06.013
  • Consoli, N.C., et al., 2021a. Ground waste glass-carbide lime as a sustainable binder stabilising three different silica sands. Géotechnique, 71 (6), 480–493. doi:10.1680/jgeot.18.P.099
  • Consoli, N.C., Párraga Morales, D., and Saldanha, R.B., 2021b. A new approach for stabilization of lateritic soil with Portland cement and sand: strength and durability. Acta Geotechnica, 16 (5), 1473–1486. doi:10.1007/s11440-020-01136-y
  • de Jesús Arrieta Baldovino, J., et al., 2020. Geopolymers based on recycled glass powder for soil stabilization. Geotechnical and Geological Engineering, 38 (4), 4013–4031. doi:10.1007/s10706-020-01274-w
  • Fauzi, A., Rahman, W.M.N.W.A., and Jauhari, Z., 2013. Utilization waste material as stabilizer on Kuantan clayey soil stabilization. Procedia Engineering, 53, 42–47. doi:10.1016/j.proeng.2013.02.007
  • Fernandes, M.M.H., et al., 2020. Estimation of soil penetration resistance with standardized moisture using modeling by artificial neural networks. Catena, 189, 104505. doi:10.1016/j.catena.2020.104505
  • Foti, D., 2013. Use of recycled waste pet bottles fibers for the reinforcement of concrete. Composite Structures, 96, 396–404. doi:10.1016/j.compstruct.2012.09.019
  • GHolipoor Norozi, A., Kouravand, S., and Boveiri, M., 2015. A review of using the waste in soil stabilization. International Journal of Engineering Trends and Technology, 21 (1), 33–37. doi:10.14445/22315381/ijett-v21p206
  • Ghorbani, A. and Hasanzadehshooiili, H., 2018. Prediction of UCS and CBR of microsilica-lime stabilized sulfate silty sand using ANN and EPR models; application to the deep soil mixing. Soils and Foundations, 58 (1), 34–49. doi:10.1016/j.sandf.2017.11.002
  • Ghosh, A., 2010. Compaction characteristics and bearing ratio of pond ash stabilized with lime and phosphogypsum. Journal of Materials in Civil Engineering, 22 (4), 343–351. doi:10.1061/(asce)mt.1943-5533.0000028
  • Gupta, D. and Kumar, A., 2017. Stabilized soil incorporating combinations of rice husk ash, pond ash and cement. Geomechanics and Engineering, 12 (1), 85–109. doi:10.12989/gae.2017.12.1.085
  • Horpibulsuk, S., et al., 2013. Strength development in silty clay stabilized with calcium carbide residue and fly ash. Soils and Foundations, 53 (4), 477–486. doi:10.1016/j.sandf.2013.06.001
  • Hossain, K.M.A. and Mol, L., 2011. Some engineering properties of stabilized clayey soils incorporating natural pozzolans and industrial wastes. Construction and Building Materials, 25 (8), 3495–3501. doi:10.1016/j.conbuildmat.2011.03.042
  • Jafari, S.H., 2014. Estimation of shear strength parameters of lime-cement stabilized granular soils from unconfined compressive tests. Geomechanics and Engineering, 7 (3), 247–261. doi:10.12989/gae.2014.7.3.247
  • Jahed Armaghani, D., et al., 2015. An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range granite. Bulletin of Engineering Geology and the Environment, 74 (4), 1301–1319. doi:10.1007/s10064-014-0687-4
  • Joe, M.A. and Rajesh, A.M., 2015. Soil stabilization using industrial waste and lime. International Journal of Scientific Research Engineering & Technology (IJSRET), 4, 799–805.
  • Juang, C.H., Jiang, T., and Christopher, R.A., 2001. Three-dimensional site characterisation: neural network approach. Géotechnique, 51 (9), 799–809. doi:10.1680/geot.2001.51.9.799
  • Kahraman, S., et al., 2010. The usability of Cerchar abrasivity index for the prediction of UCS and E of misis fault breccia: regression and artificial neural networks analysis. Expert Systems with Applications, 37 (12), 8750–8756. doi:10.1016/j.eswa.2010.06.039
  • Karabash, Z. and Cabalar, A.F., 2015. Effect of tire crumb and cement addition on triaxial shear behavior of sandy soils. Geomechanics and Engineering, 8 (1), 1–15. doi:10.12989/gae.2015.8.1.001
  • Kayadelen, C., 2008. Estimation of effective stress parameter of unsaturated soils by using artificial neural networks. International Journal for Numerical and Analytical Methods in Geomechanics, 32 (9), 1087–1106. doi:10.1002/nag.660
  • Kiefa, M.A.A., 1998. General regression neural networks for driven piles in cohesionless soils. Journal of Geotechnical and Geoenvironmental Engineering, 124 (12), 1177–1185. doi:10.1061/(asce)1090-0241(1998)124:12(1177)
  • Kiran Kumar, J. and Praveen Kumar, V., 2020a. Soil stabilization using E-waste: a retrospective analysis. Materials Today: Proceedings, 22, 691–693. doi:10.1016/j.matpr.2019.09.145
  • Kiran Kumar, J. and Praveen Kumar, V., 2020b. Experimental analysis of soil stabilization using e-waste. Materials Today: Proceedings, 22, 456–459. doi:10.1016/j.matpr.2019.07.716
  • Kordnaeij, A., Moayed, R.Z., and Soleimani, M., 2019. Unconfined compressive strength of loose sandy soils grouted with zeolite and cement. Soils and Foundations, 59 (4), 905–919. doi:10.1016/j.sandf.2019.03.012
  • Kumar, A., et al., 2020. Significance of stone waste in strength improvement of soil. Journal of Building Material Science, 1 (1), 32. doi:10.30564/jbms.v1i1.1238
  • Le, D.H., Sheen, Y.N., and Bui, Q.B., 2017. An assessment on volume stabilization of mortar with stainless steel slag sand. Construction and Building Materials, 155, 200–208. doi:10.1016/j.conbuildmat.2017.08.069
  • Mahamedi, A. and Khemissa, M., 2015. Stabilization of an expansive overconsolidated clay using hydraulic binders. HBRC Journal, 11 (1), 82–90. doi:10.1016/j.hbrcj.2014.03.001
  • Meng, J., Mattsson, H., and Laue, J., 2021. Three dimensional slope stability predictions using artificial neural networks. International Journal for Numerical and Analytical Methods in Geomechanics. 3252. doi:10.1002/nag.3252
  • Mohamad, E.T., et al., 2015. Prediction of the unconfined compressive strength of soft rocks: a PSO-based ANN approach. Bulletin of Engineering Geology and the Environment, 74 (3), 745–757. doi:10.1007/s10064-014-0638-0
  • Mohanty, S.K., Pradhan, P.K., and Mohanty, C.R., 2017. Stabilization of expansive soil using industrial wastes. Geomechanics and Engineering, 12 (1), 111–125. doi:10.12989/gae.2017.12.1.111
  • Momeni, M., Bayat, M., and Ajalloeian, R., 2020. Laboratory investigation on the effects of pH-induced changes on geotechnical characteristics of clay soil. Geomech Geoengin. doi:10.1080/17486025.2020.1716084
  • Mozumder, R.A. and Laskar, A.I., 2015. Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using artificial neural network. Computers and Geotechnics, 69, 291–300. doi:10.1016/j.compgeo.2015.05.021
  • Narani, S.S., et al., 2020. Long-term dynamic behavior of a sandy subgrade reinforced by Waste Tire Textile Fibers (WTTFs). Transportation Geotechnics, 24, 100375. doi:10.1016/j.trgeo.2020.100375
  • Narzary, B.K. and Ahamad, K.U., 2018. Estimating elastic modulus of California bearing ratio test sample using finite element model. Construction and Building Materials, 175, 601–609. doi:10.1016/j.conbuildmat.2018.04.228
  • Okyay, U.S. and Dias, D., 2010. Use of lime and cement treated soils as pile supported load transfer platform. Engineering Geology, 114 (1–2), 34–44. doi:10.1016/j.enggeo.2010.03.008
  • Panwar, P. and Ameta, N.K., 2013. Stabilization of dune sand with bentonite and lime. Electron J Geotech Eng, 18 (M), 2667–2674.
  • Rezaei-Hosseinabadi, M.J., et al., 2021. Utilisation of steel slag as a granular column to enhance the lateral load capacity of soil. Geomech Geoengin, 00, 1–11. doi:10.1080/17486025.2021.1940315
  • Roohbakhshan, A. and Kalantari, B., 2013. Stabilization of clayey soil with lime and waste stone powder. International Journal of Scientific Research in Knowledge, 1, 547–556. doi:10.12983/ijsrk-2013-p547-556
  • Saadat, M. and Bayat, M., 2019. Prediction of the unconfined compressive strength of stabilised soil by adaptive neuro fuzzy inference system (ANFIS) and Non-Linear Regression (NLR). Geomech Geoengin. doi:10.1080/17486025.2019.1699668.
  • Saleh, S., et al., 2018. Stabilization of marine clay soil using polyurethane. MATEC Web of Conferences, 250, 1–7. doi:10.1051/matecconf/201825001004
  • Salehi, M., et al., 2021. Experimental study on mechanical properties of cement-stabilized soil blended with crushed stone waste. KSCE Journal of Civil Engineering, 25 (6), 1974–1984. doi:10.1007/s12205-021-0953-5
  • Saygili, A. and Dayan, M., 2019. Freeze-thaw behavior of lime stabilized clay reinforced with silica fume and synthetic fibers. Cold Regions Science and Technology, 161, 107–114. doi:10.1016/j.matpr.2019.09.145
  • ShahriarKian, M.R., Kabiri, S., and Bayat, M., 2021. Utilization of zeolite to improve the behavior of cement-stabilized soil. International Journal of Geosynthetics and Ground Engineering, 7 (2), 35. doi:10.1007/s40891-021-00284-9
  • Sharma, L.K., et al., 2018. Experimental study to examine the independent roles of lime and cement on the stabilization of a mountain soil: a comparative study. Applied Clay Science, 152, 183–195. doi:10.1016/j.clay.2017.11.012
  • Shi, J., Ortigao, J.A.R., and Bai, J., 1998. Modular neural networks for predicting settlements during tunneling. Journal of Geotechnical and Geoenvironmental Engineering, 124 (5), 389–395. doi:10.1061/(asce)1090-0241(1998)124:5(389).
  • Shooshpasha, I. and Shirvani, R.A., 2015. Effect of cement stabilization on geotechnical properties of sandy soils. Geomechanics and Engineering, 8 (1), 17–31. doi:10.12989/gae.2015.8.1.017
  • Sivrikaya, O., Kıyıldı, K.R., and Karaca, Z., 2014. Recycling waste from natural stone processing plants to stabilise clayey soil. Environmental Earth Sciences, 71 (10), 4397–4407. doi:10.1007/s12665-013-2833-x
  • Sivrikaya, O. and Soycan, T.Y., 2011. Estimation of compaction parameters of fine-grained soils in terms of compaction energy using artificial neural networks. International Journal for Numerical and Analytical Methods in Geomechanics, 35 (17), 1830–1841. doi:10.1002/nag.981.
  • Tarigan, P.J.S.B. and Syahril, S., 2021. Effects of subgrade stabilized with calcite and asphalt emulsion. IOP Conference Series: Materials Science and Engineering, 1098 (2), 022061. doi:10.1088/1757-899x/1098/2/022061.
  • Uddin, K., Balasubramaniam, A.S., and Bergado, D.T., 1997. Engineering behavior of cement-treated Bangkok soft clay. Geotech Eng, 28, 89–119.
  • Voottipruex, P. and Jamsawang, P., 2014. Characteristics of expansive soils improved with cement and fly ash in Northern Thailand. Geomechanics and Engineering, 6 (5), 437–453. doi:10.12989/gae.2014.6.5.437.
  • Xiao, Y., et al., 2018. Nonlinear regression model for peak-failure strength of rockfill materials in general stress space. Geoscience Frontiers, 9 (6), 1699–1709. doi:10.1016/j.gsf.2017.07.001
  • Yilmaz, F., Kamiloğlu, H.A., and Şadoğlu, E., 2015. Soil stabilization with using waste materials against freezing thawing effect. Acta Physica Polonica A, 128 (2B), 392–394. doi:10.12693/APhysPolA.128.B-392
  • Yu, H., et al., 2016. Improving performance of soil stabilizer by scientific combining of industrial wastes. Geomechanics and Engineering, 10 (2), 247–256. doi:10.12989/gae.2016.10.2.247
  • Zare, P., et al., 2020. Experimental investigation of non-stabilized and cement-stabilized rammed earth reinforcement by Waste Tire Textile Fibers (WTTFs). Construction and Building Materials, 260, 120432. doi:10.1016/j.conbuildmat.2020.120432
  • Zhang, Y., et al., 2020a. Effect of temperature on pH, conductivity, and strength of lime-stabilized soil. Journal of Materials in Civil Engineering, 32 (3), 04019380. doi:10.1061/(asce)mt.1943-5533.0003062
  • Zhang, Y., et al., 2020b. Three-dimensional digital soil mapping of multiple soil properties at a field-scale using regression kriging. Geoderma, 366, 114253. doi:10.1016/j.geoderma.2020.114253
  • Zhang, Y., Johnson, A.E., and White, D.J., 2016. Laboratory freeze-thaw assessment of cement, fly ash, and fiber stabilized pavement foundation materials. Cold Regions Science and Technology, 122, 50–57. doi:10.1016/j.coldregions.2015.11.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.