191
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Cyclic undrained properties of stabilised expansive clay with lignosulfonate

, &
Pages 284-298 | Received 05 Sep 2021, Accepted 13 Feb 2022, Published online: 24 Feb 2022

References

  • Abdelkrim, M. and Mohamed, K., 2013. Cement stabilization of compacted expansive clay. Online Journal of Science and Technology, 3 (1), 33–38.
  • Alazigha, D.P., et al., 2016. The swelling behavior of lignosulfonate-treated expansive soil. Proceedings of the Institution of Civil Engineers-Ground Improvement, 27, 1–12.
  • Alazigha, D.P., et al., 2018. Mechanisms of stabilization of expansive soil with lignosulfonate admixture. Transportation Geotechnics, 14, 81–92. doi:10.1016/j.trgeo.2017.11.001
  • Al-Juari, K.A.K., et al., 2020. Simulation of behaviour of swelling soil supported by a retaining wall. Scotland: Proceedings of the Institution of Civil Engineers - Structures and Buildings, 1–10. doi:10.1680/jstbu.19.00152.
  • Al-Mukhtar, M., Lasledj, A., and Alcover, J.F., 2010. Behaviour and mineralogy changes in lime-treated expansive soil at 20 C. Applied Clay Science, 50 (2), 191–198. doi:10.1016/j.clay.2010.07.023
  • Al-Rawas, A.A., Hago, A.W., and Al-Sarmi, H., 2005. Effect of lime, cement and Sarooj (artificial pozzolan) on the swelling potential of an expansive soil from Oman. Building and Environment, 40 (5), 681–687. doi:10.1016/j.buildenv.2004.08.028
  • ASTM D2487, 2011. Standard practice for classification of soils for engineering purposes (unified soil classification system). Standards, USA: Annual Book of ASTM.
  • ASTM D3999, 2011. Standard test methods for the determination of the modulus and damping properties of soils using the cyclic triaxial apparatus. Standards, USA: Annual Book of ASTM.
  • ASTM D4609, 2008. Standard guide for evaluating the effectiveness of admixtures for soil stabilization. Standards, USA: Annual Book of ASTM.
  • ASTM D5311, 2013. Standard test method for load controlled cyclic triaxial strength of the soil. Standards, USA: Annual Book of ASTM.
  • ASTM D6913, 2017. Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. Standards, USA: Annual Book of ASTM.
  • ASTM D698, 2012. Standard test methods for laboratory compaction characteristics of soil using standard effort. Standards, USA: Annual Book of ASTM.
  • ASTM D7928, 2017. Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis. Standards, USA: Annual Book of ASTM.
  • ASTM E1252, 2013. Standard practice for general techniques for obtaining infrared spectra for qualitative analysis. Standards, USA: Annual Book of ASTM.
  • ASTM E1621, 2013. Standard guide for elemental analysis by wavelength dispersive x-ray fluorescence spectrometry. Standards, USA: Annual Book of ASTM.
  • Basma, A.A., Al-Homoud, A.S., and Husein, A., 1995. Laboratory assessment of swelling pressure of expansive soils. Applied Clay Science, 9 (5), 355–368. doi:10.1016/0169-1317(94)00032-L
  • Boulanger, R.W. and Idriss, I.M., 2006. Liquefaction susceptibility criteria for silts and clays. Journal of Geotechnical and Geoenvironmental Engineering, 132 (11), 1413–1426. doi:10.1061/(ASCE)1090-0241(2006)132:11(1413)
  • Chen, F.H., 2012. Foundations on expansive soils. Vol. 12, Netherlands: Elsevier.
  • Chen, Q. and Indraratna, B., 2014a. Deformation behavior of lignosulfonate-treated sandy silt under cyclic loading. Journal of Geotechnical and Geoenvironmental Engineering, 141 (1), 06014015. doi:10.1061/(ASCE)GT.1943-5606.0001210
  • Chen, Q. and Indraratna, B., 2014b. Shear behaviour of sandy silt treated with lignosulfonate. Canadian Geotechnical Journal, 52 (8), 1180–1185. doi:10.1139/cgj-2014-0249
  • Chen, Q., et al., 2014. A theoretical and experimental study on the behaviour of lignosulfonate-treated sandy silt. Computers and Geotechnics, 61, 316–327. doi:10.1016/j.compgeo.2014.06.010
  • Chen, Q., Indraratna, B., and Rujikiatkamjorn, C., 2015. Behaviour of lignosulfonate-treated soil under cyclic loading. Proceedings of the Institution of Civil Engineers-Ground Improvement, 169 (2), 109–119. doi:10.1680/grim.15.00004
  • Dafalla, M.A. and Shamrani, M.A., 2011. Road damage due to expansive soils: survey of the phenomenon and measures for improvement. InDesign, Construction, Rehabilitation, and Maintenance of Bridges, 73–80.
  • Fahoum, K., Aggour, M.S., and Amini, F., 1996. Dynamic properties of cohesive soils treated with lime. Journal of Geotechnical Engineering, 122 (5), 382–389. doi:10.1061/(ASCE)0733-9410(1996)122:5(382)
  • Fattah, M.Y. and Al-Lami, A.H., 2016. Behavior and characteristics of compacted expansive unsaturated bentonite-sand mixture. Journal of Rock Mechanics and Geotechnical Engineering, 8 (5), 629–639. doi:10.1016/j.jrmge.2016.02.005
  • Fattah, M.Y., Nareeman, B.J., and Salman, F.A., 2011. A treatment of expansive soil using different additives. Acta Montanistica Slovaca, 15 (4), 314–321.
  • Fattah, M.Y., Salim, N.M., and Irshayyid, E.J., 2017. Influence of soil suction on swelling pressure of bentonite-sand mixtures. European Journal of Environmental and Civil Engineering, 1–15. doi:10.1080/19648189.2017.1320236
  • Fernandez, M.T., et al., 2021. Performance of calcium lignosulfonate as a stabiliser of highly expansive clay. Transportation Geotechnics, 27, 100469. doi:10.1016/j.trgeo.2020.100469
  • Guo, L., et al., 2013. Undrained deformation behavior of saturated soft clay under long-term cyclic loading. Soil Dynamics and Earthquake Engineering, 50, 28–37. doi:10.1016/j.soildyn.2013.01.029
  • Holtz, W.G., 1954. Engineering properties of expansive clays. Transactions of the American Society of Civil Engineers, 121, 641–677. doi:10.1061/TACEAT.0007325
  • Horpibulsuk, S., et al., 2010. Analysis of strength development in cement-stabilized silty clay from microstructural considerations. Construction and Building Materials, 24 (10), 2011–2021. doi:10.1016/j.conbuildmat.2010.03.011
  • Hoyos, L.R., Puppala, A.J., and Chainuwat, P., 2004. Dynamic properties of chemically stabilized sulfate rich clay. Journal of Geotechnical and Geoenvironmental Engineering, 130 (2), 153–162. doi:10.1061/(ASCE)1090-0241(2004)130:2(153)
  • Hsu, C.C. and Vucetic, M., 2006. Threshold shear strain for cyclic pore-water pressure in cohesive soils. Journal of Geotechnical and Geoenvironmental Engineering, 132 (10), 1325–1335. doi:10.1061/(ASCE)1090-0241(2006)132:10(1325)
  • Indraratna, B., 1996. Utilization of lime, slag and fly ash for improvement of a colluvial soil in New South Wales, Australia. Geotechnical and Geological Engineering, 14 (3), 169–191.
  • Indraratna, B., Athukorala, R., and Vinod, J., 2013. Estimating the rate of erosion of a silty sand treated with lignosulfonate. Journal of Geotechnical and Geoenvironmental Engineering, 139 (5), 701–714. doi:10.1061/(ASCE)GT.1943-5606.0000766
  • Indraratna, B., et al., 2008. Predicting the erosion rate of chemically treated soil using a process simulation apparatus for internal crack erosion. Journal of Geotechnical and Geoenvironmental Engineering, 134 (6), 837–844. doi:10.1061/(ASCE)1090-0241(2008)134:6(837)
  • Kokusho, T., 1980. Cyclic triaxial test of dynamic soil properties for wide strain range. Soils and Foundations, 20 (2), 45–60. doi:10.3208/sandf1972.20.2_45
  • Lade, P.V. and Overton, D.D., 1989. Cementation effects in frictional materials. Journal of Geotechnical Engineering, 115 (10), 1373–1387. doi:10.1061/(ASCE)0733-9410(1989)115:10(1373)
  • Lambe, T.W. and Whitman, R.V., 2008. Soil mechanics SI version. New York: John Wiley and Sons.
  • Miller, G.A., et al., 2000. Cyclic shear strength of soft railroad subgrade. Journal of Geotechnical and Geoenvironmental Engineering, 126 (2), 139–147. doi:10.1061/(ASCE)1090-0241(2000)126:2(139)
  • Miura, S., Yagi, K., and Kawamura, S., 1995. Liquefaction damage of sandy and volcanic grounds in the 1993 Hokkaido Nansei-Oki earthquake. Proc. 3rd Int. Conf. On Recent Advances in Geotechnical Earthq. Engrg. And Soil Dynamics, St. Louis, Missouri, 1, 193–196.
  • Mortezaie, A.R. and Vucetic, M., 2013. Effect of frequency and vertical stress on cyclic degradation and pore water pressure in clay in the NGI simple shear device. Journal of Geotechnical and Geoenvironmental Engineering, 139 (10), 1727–1737. doi:10.1061/(ASCE)GT.1943-5606.0000922
  • Noorzad, R. and Amini, P.F., 2014. Liquefaction resistance of Babolsar sand reinforced with randomly distributed fibers under cyclic loading. Soil Dynamics and Earthquake Engineering, 66, 281–292. doi:10.1016/j.soildyn.2014.07.011
  • Noorzad, R. and Ta’negonbadi, B., 2018. Mechanical properties of expansive clay stabilized with lignosulphonate. Quarterly Journal of Engineering Geology and Hydrogeology, 51 (4), 483–492. doi:10.1144/qjegh2017-050
  • Noorzad, R. and Ta’negonbadi, B., 2020. Volume change behavior of stabilized expansive clay with lignosulfonate. Scientia Iranica, 27 (4), 1762–1775.
  • Obermeier, S.F., et al., 1985. Geologic evidence for recurrent moderate to large earthquakes near Charleston, South Carolina. Science, 227 (4685), 408–411. doi:10.1126/science.227.4685.408
  • Perlea, V.G., 2000. Liquefaction of cohesive soils. Soil Dynamics and Liquefaction, 58–76.
  • Poulos, H.G., 1988. Marine geotechnics. London, UK: Academic Division of Unwin Hyman Ltd.
  • Puppala, A.J. and Hanchanloet, S., 1999. Evaluation of a new chemical treatment method on strength and resilient properties of a cohesive soil. Transportation Research Board, Paper No. 990389.
  • Seed, R.B., et al., 2003. Recent advances in soil liquefaction engineering: a unified and consistent framework. In Proceedings of the 26th Annual ASCE Los Angeles Geotechnical Spring Seminar: Long Beach, CA.
  • Sharma, N.K., Swain, S.K., and Sahoo, U.C., 2012. Stabilization of a clayey soil with fly ash and lime: a micro level investigation. Geotechnical and Geological Engineering, 30 (5), 1197–1205. doi:10.1007/s10706-012-9532-3
  • Sharmila, B., Bhuvaneshwari, S., and Landlin, G., 2021. Application of lignosulphonate a sustainable approach towards strength improvement and swell management of expansive soils. Bulletin of Engineering Geology and the Environment, 80, 6395–6413. doi:10.1007/s10064-021-02323-1
  • Skempton, A.W., 1954. The pore-pressure coefficients A and B. Geotechnique, 4 (4), 143–147. doi:10.1680/geot.1954.4.4.143
  • Sun, J.I., Golesorkhi, R., and Seed, H.B., 1988. Dynamic moduli and damping ratios for cohesive soils. Berkeley: Earthquake Engineering Research Center, University of California.
  • Ta’negonbadi, B. and Noorzad, R., 2017. Stabilization of clayey soil using lignosulfonate. Transportation Geotechnics, 12, 45–55. doi:10.1016/j.trgeo.2017.08.004
  • Ta’negonbadi, B. and Noorzad, R., 2018. Physical and geotechnical long-term properties of lignosulfonate-stabilized clay: an experimental investigation. Transportation Geotechnics, 17, 41–50. doi:10.1016/j.trgeo.2018.09.001
  • Tingle, J.S. and Santoni, R.L., 2003. Stabilization of clay soils with nontraditional additives. Transportation Research Record, 1819 (1), 72–84. doi:10.3141/1819b-10
  • Tohno, I. and Yasuda, S., 1981. Liquefaction of the ground during the 1978 Miyagiken-Oki earthquake. Soils and Foundations, 21 (3), 18–34. doi:10.3208/sandf1972.21.3_18
  • Vinod, J.S., Indraratna, B., and Al Mahamud, M.A., 2010. Stabilization of an erodible soil using a chemical admixture. Proceeding of the ICE - Ground Improvement, 163 (1), 43–51. doi:10.1680/grim.2010.163.1.43
  • Wang, M., et al., 2012. Dynamic characteristics of lime-treated expansive soil under cyclic loading. Journal of Rock Mechanics and Geotechnical Engineering, 4 (4), 352–359. doi:10.3724/SP.J.1235.2012.00352
  • Xiao, B., Sun, X.F., and Sun, R., 2001. The chemical modification of lignins with succinic anhydride in aqueous systems. Polymer Degradation and Stability, 71 (2), 223–231. doi:10.1016/S0141-3910(00)00133-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.