426
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Impact of the overall regularity and related granulometric characteristics on the critical state soil mechanics of natural sands: a state-of-the-art review

, , &
Pages 299-308 | Received 05 Oct 2021, Accepted 13 Feb 2022, Published online: 26 Feb 2022

References

  • Alarcon, A. and Leonards, G.A., 1988. Discussion of “Liquefaction evaluation procedure”, by S. J. Poulos, G. Castro and J. W. France. Journal of Geotechnical Engineering, 114 (2), 232–259. ASCE. 10.1061/(ASCE)0733-9410(1988)114:2(232).
  • Alshibli, K.A. and Mehmet, B.C., 2018. Influence of particle morphology on the friction and dilatancy of sand. Journal of Geotechnical and Geoenvironmental Engineering, 144 (3), 04017118. doi:10.1061/(ASCE)GT.1943-5606.0001841
  • Altuhafi, F.N., Coop, M.R., and Georgiannou, V.N., 2016. Effect of particle shape on the mechanical behavior of natural sands. Journal of Geotechnical and Geoenvironmental Engineering, 142 (12), 04016071. doi:10.1061/(ASCE)GT.1943-5606.0001569
  • Alvarado, G., Lui, N., and Coop, M.R., 2012. Effect of fabric on the behavior of reservoir sandstones. Canadian Geotechnical Journal, 49 (9), 1036–1051. doi:10.1139/t2012-060
  • Been, K. and Jefferies, M.G., 1985. A state parameter for sands. Géotechnique, 35 (2), 11 99–112. doi:10.1680/geot.1985.35.2.99
  • Been, K., Jefferies, M.G., and Hachey, J., 1991. The critical state of sands. Geotechnique, 41 (3), 365–381. doi:10.1680/geot.1991.41.3.365
  • Bouckovalas, G.D., Andianopoulos, K. I., and Papadimitriou, A. G., 2003. A critical state interpretation for cyclic liquefaction resistance of silty sand. Soils Dynamics and Earthquake Engineering, 23 (2), 115–125. doi:10.1016/S0267-7261(02)00156-2
  • Carrera, A., Coop, M.R., and Lancellotta, R., 2011. Influence of grading on the mechanical behaviour of Stava tailings. Géotechnique, 61 (11), 935–946. doi:10.1680/geot.9.P.009
  • Castro, G.E., 1982. Liquefaction induced by cyclic loading. Report to National Science and Foundation, No. NSF/CEE-82018. Washington, DC: National Science Foundation
  • Cavarretta, I., 2009. The influence of particle characteristics on the engineering behaviour of granular materials. Ph.D. thesis. London: Imperial College London.
  • Cherif Taiba, A., et al., 2016. Insight into the effect of granulometric characteristics on static liquefaction susceptibility of silty sand soils. Geotechnical and Geological Engineering, 34 (1), 367–382. doi:10.1007/s10706-015-9951-z
  • Cherif Taiba, A., 2017. Laboratory Study on Susceptibility of Liquefaction of Silty Sand Soils: Effect of Size and Shape of Grain. PhD. Thesis. Algeria: University of Chlef.
  • Cherif Taiba, A., et al., 2018. Experimental investigation into the influence of roundness and sphericity on the undrained shear response of silty sand soils. Geotechnical Testing Journal, 41 (3), 20170118. doi:10.1520/GTJ20170118
  • Cherif Taiba, A., et al., 2019. Effects of gradation on the mobilized friction angle for the instability and steady states of sand-silt mixtures: experimental evidence. Acta Geotechnica Slovenica. doi:10.18690/actageotechslov.16.1.79-95.2019
  • Cherif Taiba, A., et al., 2021a. Assessment of the correlation between grain angularity parameter and friction index of sand containing low plastic fines. Geomechanics and Geoengineering: An International Journal, 16 (2), 133–149. doi:10.1080/17486025.2019.1648881
  • Cherif Taiba, A., et al., 2021b. Predicting the saturated hydraulic conductivity of particulate assemblies based on active fraction of fines and particle-size disparity parameters. Geomechanics and Geoengineering, 1–13. doi:10.1080/17486025.2021.1890233
  • Cherif Taiba, A., et al., 2021c. Threshold silt content dependency on particle morphology (shape and size) of granular materials: review with new evidence. Acta geotechnica Slovenica, 18 (1), 28–40. doi:10.18690/actageotechslov.18.1.28-40.2021
  • Chiu, C.F. and Fu, X.J., 2008. Interpreting undrained instability of mixed soils by equivalent intergranular state parameter. Geotechnique, 58 (9), 751–755. doi:10.1680/geot.2008.58.9.751
  • Chillarige, A.V., et al., 1997. Evaluation of the in-situ state of Fraser River sand. Canadian Geotechnical Journal, 34 (4), 510–519. doi:10.1139/t97-018
  • Cho, G., Dodds, J., and Santamarina, J.C., 2006. Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. Journal of Geotechnical and Geoenvironmental Engineering, 132 (5), 591–602. doi:10.1061/(ASCE)1090-0241(2006)132:5(591)
  • Chu, J. and Wanatowski, D., 2009. Effect of loading mode on strain softening and instability behavior of sand in plane-strain tests. Journal of Geotechnical and Geoenvironmental Engineering, 135 (1), 108–120. doi:10.1061/(ASCE)1090-0241(2009)135:1(108)
  • Chu, J., et al., 2012. Instability of loose sand under drained conditions. Journal of Geotechnical and Geoenvironmental Engineering, 138 (2), 207–216. doi:10.1061/(ASCE)GT.1943-5606.0000574
  • Coop, M.R. and Lee, I.K., 1993. The behaviour of granular soils at elevated stresses. In: G.T. Houlsby and A.N. Schofield, eds. Predictive soil mechanics: proc., Worth Memorial Symp. London: Thomas Telford, 186–198.
  • Cuccovillo, T. and Coop, M.R., 1997. The measurement of local axial strains in triaxial testing using LVDTs. Géotechnique, 47 (1), 167–171. doi:10.1680/geot.1997.47.1.167
  • Dai, B.B., Yang, J., and Zhou, C.Y., 2016. Observed effects of interparticle friction and particle size on shear behavior of granular materials. International Journal of Geomechanics, 16 (1), 04015011. doi:10.1061/(ASCE)GM.1943-5622.0000520
  • Doumi, K., et al., 2021a. Influence of the particle size on the flow potential and friction index of partially saturated sandy soils. Transportation Infrastructure Geotechnology. doi:10.1007/s40515-021-00193-4
  • Doumi, K., et al., 2021b. Experimental investigation on the influence of relative effective diameter on ultimate shear strength of partially saturated granular soils. Acta geotechnica Slovenica, 17 (1), 56–70. doi:10.18690/actageotechslov.17.1.56-70.2020
  • Duttine, A. and Tatsuoka, F., 2009. Viscous properties of granular materials having different particle shapes in direct shear. Soils and Foundations, 49 (5), 777–796. doi:10.3208/sandf.49.777
  • Guo, P. and Su, X., 2007. Shear strength, interparticle locking, and dilatancy of granular materials. Canadian Geotechnical Journal, 44 (5), 579–591. doi:10.1139/t07-010
  • Hicher, P.Y., Dano, C., and Chang, C.S., 2008. A microstructural model for cemented sand. 12th Int. Conf. (IACMAG). Goa, India, 661–668.
  • Holtz, W., Gibbs, G., and H, J., 1956. Triaxial shear tests on previous gravelly soils. Journal of the Soil Mechanics and Foundations Division, 820 (1), 1–22. [ ASCE].
  • Hyodo, M., Aramaki, N., and Nakata, Y., 1999. Particle crushing and undrained shear behaviour of sand. The Ninth International Offshore and Polar Engineering Conference, Brest, France, 785–791.
  • Kang, X., Xia, Z., Chen, R., Ge, L., and Liu, X., 2019. The critical state and steady state of sand: a literature review. Marine Georesources & Geotechnology, 37 (9), 1105–1118. doi:10.1080/1064119X.2018.1534294
  • Li, W., et al., 2019. Sand type effect on the behaviour of sand-granulated rubber mixtures: integrated study from micro- to macro-scales. Powder Technology, 342, 907–916. doi:10.1016/j.powtec.2018.10.025
  • Lu, Z., et al., 2019. Re-recognizing the impact of particle shape on physical and mechanical properties of sandy soils: a numerical study. Journal of Engineering Geology, 253, 36–46. doi:10.1016/j.enggeo.2019.03.011
  • Mahmoudi, Y., et al., 2018. Influence of soil fabrics and stress state on the undrained instability of overconsolidated binary granular assemblies. Journal of Studia Geotechnica Et Mechanica, 40 (2), 96–116. doi:10.2478/sgem-2018-0011
  • Mahmoudi, Y., et al., 2019. Experimental evidence into the impact of sample reconstitution on the pore water pressure generation of overconsolidated silty sand soils. Journal of Geo-engineering. doi:10.6310/jog.201912_14(4).3
  • Mahmoudi, Y., et al., 2020a. Packing density and overconsolidation ratio effects on the mechanical response of granular soils. Geotechnical and Geological Engineering, 38 (1), 723–742. doi:10.1007/s10706-019-01061-2
  • Mahmoudi, Y., et al., 2020b. Characterization of mechanical behavior of binary granular assemblies through the equivalent void ratio and equivalent state parameter. European Journal of Environmental and Civil Engineering, 1–29. doi:10.1080/19648189.2020.1775708
  • Mahmoudi, Y., et al., 2021. Friction and maximum dilatancy angles of granular soils incorporating low plastic fines and depositional techniques effects. European Journal of Environmental and Civil Engineering, 1–23. doi:10.1080/19648189.2021.1999334
  • Nakata, Y., Hyodo, M., and Murata, H., 1999. Single particle crushing properties of geomaterials International symposium on pre-failure deformation characteristics of geomaterials. In:M. Jamiolkowski, R. Lancellotta, and D.L. Presti, eds., Balkema, Rotterdam, Netherlands, 221–228.
  • Oda, M., 1972. Initial fabrics and their relations to mechanical properties of granular material. Soils and Foundations, 12 (1), 17–36. doi:10.3208/sandf1960.12.17
  • Payan, M., et al., 2016a. Effect of particle shape and validity of Gmax models for sand: a critical review and a new model. Computers and Geotechnics, 72, 28–41. 2016. doi:10.1016/j.compgeo.2015.11.003
  • Payan, M., et al., 2016b. Influence of particle shape on small-strain material damping of dry sand. Geotechnique, 66 (7), 610–616. 2016. 10.1680/jgeot.15.T.035.
  • Payan, M., et al., 2016c. Small-strain stiffness of sand subjected to stress anisotropy. Soil Dynamics and Earthquake Engineering, 88, 143–151. 2016. doi:10.1016/j.soildyn.2016.06.004
  • Rahman, M. and Lo, S.R., 2014. Undrained behavior of sand-fines mixtures and their state parameter. Journal of Geotechnical and Geoenvironmental Engineering, 140 (7), 04014036. doi:10.1061/(ASCE)GT.1943-5606.0001115
  • Roscoe, K.H., Schofield, A.N., and Thurairajah, A., 1963. Yielding of clays in states wetter than critical. Geotechnique, 13 (3), 211–240. doi:10.1680/geot.1963.13.3.211
  • Rouse, P.C., Fannin, R.J., and Taiebat, M., 2014. Sand strength for back analysis of pull-out tests at large displacement. Géotechnique, 64 (4), 320–324. doi:10.1680/geot.13.T.021
  • Sandeep, C.S. and Senetakis, K., 2019. Influence of morphology on the micro-mechanical behavior of soil grain contacts. Geomechanics and Geophysics for Geo-energy and Geo-Resources, 5 (2), 103–119. doi:10.1007/s40948-018-0094-6
  • Sandeep, C.S., Li, S., and Senetakis, K., 2021. Scale and surface morphology effects on the micromechanical contact behavior of granular materials. Tribology International, 159, 106929. doi:10.1016/j.triboint.2021.106929
  • Santamarina, J.C. and Cho, G.C., 2001. Determination of critical state parameters in sandy soils-Simple procedure. Geotechnical Testing Journal, 24 (2), 185–192. doi:10.1520/GTJ11338J
  • Saxena, S.K. and Reddy, K.R., 1989. Dynamic moduli and damping ratios for Monterey No. 0 sand by R.C. tests. Soils and Foundations, 29 (2), 37–51. doi:10.3208/sandf1972.29.2_37
  • Schanz, T., and Venmeer, P.A., 1996. Angles of friction and dilatancy of sand. Géotechnique, 46 (1), 145–151. doi:10.1680/geot.1996.46.1.145
  • Schofield, A.N. and Wroth, C.P., 1968. Critical state soil mechanics. New York: McGraw-Hill.
  • Silva Dos Santos, A.P., et al., 2010. High-pressure isotropic compression tests on fiber-reinforced cemented sand. Journal of Geotechnical and Geoenvironmental Engineering, 136 (6), 885–890. doi:10.1061/(ASCE)GT.1943-5606.0000300
  • Simpson, D.C. and Evans, T.M., 2016. Behavioral thresholds in mixtures of sand and kaolinite clay. Journal of Geotechnical and Geoenvironmental Engineering, 142 (2), 04015073. doi:10.1061/(ASCE)GT.1943-5606.0001391
  • Strahler, A., Stuedlein, A.W., and Arduino, P.W., 2016. Stress-strain response and dilatancy of sandy gravel in triaxial compression and plane strain. Journal of Geotechnical and Geoenvironmental Engineering, 142 (4), 04015098. doi:10.1061/(ASCE)GT.1943-5606.0001435
  • Tsomokos, A. and Georgiannou, V.N., 2010. Effect of grain shape and angularity on the undrained response of fine sands. Canadian Geotechnical Journal, 47 (5), 539–551. doi:10.1139/T09-121
  • Ventouras, K. and Coop, M.R., 2009. On the behaviour of Thanet Sand: an example of an uncemented natural sand. Géotechnique, 59 (9), 727–738. doi:10.1680/geot.7.00061
  • Verdugo, R. and Ishihara, K., 1996. The steady state of sand soils. Soils and Foundations, 36 (2), 81–91. doi:10.3208/sandf.36.2_81
  • Wadell, H.A., 1932. Volume, shape, and roundness of rock particles. The Journal of Geology, 40 (5), 443–451. doi:10.1086/623964
  • Xiao, Y., et al., 2016. Effect of intermediate principal-stress ratio on particle breakage of rockfill material. Journal of Geotechnical and Geoenvironmental Engineering, 142 (4), 06015017. doi:10.1061/(ASCE)GT.1943-5606.0001433
  • Xiao, Y., et al., 2018. Gradation-dependent thermal conductivity of sands. Journal of Geotechnical and Geoenvironmental Engineering, 144 (9), 06018010. doi:10.1061/(ASCE)GT.1943-5606.0001943
  • Xiao, Y., et al., 2019. Effect of particle shape on stress-dilatancy responses of medium dense sands. Journal of Geotechnical and Geoenvironmental Engineering, 145 (2), 04018105. doi:10.1061/(ASCE)GT.1943-5606.0001994
  • Xu, M., Song, E., and Chen, J., 2012. A large triaxial investigation of the stress-path-dependent behavior of compacted rockfill. Acta Geotechnica, 7 (3), 167–175. doi:10.1007/s11440-012-0160-0
  • Yang, J. and Wei, L.M., 2012. Collapse of loose sand with the addition of fines: the role of particle shape. Geotechnique, 62 (12), , 1111–1125. doi:10.1680/geot.11.P.062
  • Yang, J. and Luo, X.D., 2015. Exploring the relationship between critical state and particle shape for granular materials. Journal of the Mechanics and Physics of Solids, 84, 196–213. doi:10.1016/j.jmps.2015.08.001
  • Yamamuro, J.A. and Lade, P.V., 1997. Static liquefaction of very loose sands. Canadian Geotechnical Journal, 6 (6), 905–917. doi:10.1139/t97-057
  • Yoginder, P., Vaid, J.C., and Haidi, T., 1985. Confining pressure, grain angularity and liquefaction. Journal of Geotechnical Engineering, 111 (10), 1229–1235. doi:10.1061/(ASCE)0733-9410(1985)111:10(1229)
  • Zhu, Z., et al., 2021. Assessment of tamping-based specimen preparation methods on static liquefaction of loose silty sand. Soil Dynamics and Earthquake Engineering. doi:10.1016/j.soildyn.2021.106592

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.