271
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The effect of grain interlocking in discrete element modelling of rock cutting

ORCID Icon & ORCID Icon
Pages 394-417 | Received 18 Jul 2021, Accepted 05 Apr 2022, Published online: 19 Apr 2022

References

  • Altindag, R. and Guney, A., 2010. Predicting the relationships between brittleness and mechanical properties (UCS, TS and SH) of rocks. Scientific Research and Essays, 5 (16), 2107–2118.
  • Anagnostou, V., 2006. Specific energy for cutting sedimentary rocks in laboratory tests. Unpublished MSc thesis. National Technical University of Athens (in Greek)
  • Bilgin, N., et al., 2006. Dominant rock properties affecting the performance of conical picks and the comparison of some experimental and theoretical results. International Journal of Rock Mechanics and Mining Sciences, 43 (1), 139–156. doi:10.1016/j.ijrmms.2005.04.009
  • Brady, B.H.G. and Brown, E.T., 2006. Rock mechanics for underground mining. 3rd. Dordrecht: Springer.
  • Block, G. and Howie, J. Role of failure mode on rock cutting dynamics. Paper presented at the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, October 2009. doi: 10.2118/124870-MS
  • Cho, N., Martin, C.D., and Sego, D.C., 2007. A clumped particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 44 (7), 997–1010. doi:10.1016/j.ijrmms.2007.02.002
  • Duhamel, P. and Vetterli, M., 1990. Fast Fourier transforms: a tutorial review and a state of the art. Signal Processing, 19, 259–299. doi:10.1016/0165-1684(90)90158-U
  • Gonze, N. and Katshidikaya, T., 2015. Clump models: an improvement in the rock cutting modeling by DEM? In: W. ShubertA. Kluckner, eds. EUROCK 2015 and 64th Geomechanics colloquium – future development of rock mechanics. Salzburg: Austrian Society for Geomechanics, 943–948.
  • Hamdi, J., et al., 2017. Effect of discretization at laboratory and large scales during discrete element modelling of brittle failure. International Journal of Rock Mechanics and Mining Sciences, 100, 48–61. doi:10.1016/j.ijrmms.2017.10.022
  • Hart, R., Cundall, P.A., and Lemos, J., 1988. Formulation of a three-dimensional distinct element model – part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 25 (3), 117–125. doi:10.1016/0148-9062(88)92294-2
  • He, X. and Xu, C., 2015. Discrete element modelling of rock cutting: from ductile to brittle transition. International Journal for Numerical and Analytical Methods in Geomechanics, 39 (12), 1331–1351. doi:10.1002/nag.2362
  • Hicher, P.Y., 1998. Experimental behaviour of granular materials. In Cambou, B. ed. Behaviour of granular materials. 1–97. Springer:Vienna. doi:10.1007/978-3-7091-2526-7_1
  • Holt, R.M., et al., 2005. Comparison between controlled laboratory experiments and discrete particle simulations of the mechanical behaviour of rock. International Journal of Rock Mechanics and Mining Sciences, 42 (7–8), 985–995. doi:10.1016/j.ijrmms.2005.05.006
  • Huang, H., Detournay, E., and Bellier, B., 1999. Discrete element modeling of rock cutting. In: B. Amadei, et al., eds. Rock Mechanics for industry: Proceedings of the 37th U.S. Rock Mechanics Symposium. Rotterdam: Balkema, 123–130
  • Huang, H., Lecampion, B., and Detournay, E., 2013. Discrete element modeling of tool-rock interaction I: rock cutting. International Journal for Numerical and Analytical Methods in Geomechanics, 37 (13), 1913–1929. doi:10.1002/nag.2113
  • Itasca Consulting Group Inc, 2014. PFC2D/3D (particle flow code in 2/3 dimensions), Version 5.0. Minneapolis: ICG.
  • Jing, L. and Stephansson, O., 2007. Fundamentals of discrete element methods for rock engineering: theory and applications. Amsterdam: Elsevier.
  • Joodi, B., et al., 2012. Simulation of the cutting action of a single PDC cutter using DEM. Wit Transactions on Engineering Sciences, 81 (8), 143–150. doi:10.2495/PMR120131
  • Kozicki, J. and Donzé, F.V., 2009. YADE-OPEN DEM: an open-source software using a discrete element method to simulate granular material. Engineering Computation, 26 (7), 786–805. doi:10.1108/02644400910985170
  • Lei, S. and Kaitkay, P., 2003. Distinct element modeling of rock cutting under hydrostatic pressure. Key Engineering Materials, 250, 110–117
  • Lei, S., Kaitkay, P., and Shen, X., 2004. Simulation of rock cutting using distinct element method – PFC2D. In: Shimizu Y, R.D. Hart and P.A. Cundall, eds. Proceedings of the 2nd International PFC Symposium: Numerical modeling in micromechanics via particle methods. Leiden:Balkema, 63–71
  • Li, P., et al., 2017. A PFC3D-based numerical simulation of cutting load for lunar rock simulant and experimental validation. Advances in Space Research, 59 (10), 2583–2599. doi:10.1016/j.asr.2017.02.032
  • Li, X., et al., 2018. Investigation on the influence mechanism of rock brittleness on rock fragmentation and cutting performance by discrete element method. Measurement, 113, 120–130. doi:10.1016/j.measurement.2017.07.043
  • Liu, W., Zhu, X., and Jing, J., 2017. The analysis of ductile-brittle failure mode transition in rock cutting. Journal of Petroleum Science and Engineering, 163, 311–319. doi:10.1016/j.petrol.2017.12.067
  • Mendoza, J.A., et al., 2011. Considerations for discrete modeling of rock cutting. In: Proceedings of the 45th US Rock Mechanics/Geomechanics Symposium. Alexandria, VA:American Rock Mechanics Association; II, 1306–1311
  • Perras, M.A. and Diederichs, M.S., 2014. A review of the tensile strength of rock: concepts and testing. Geotechnical and Geological Engineering, 32, 525–546. doi:10.1007/s10706-014-9732-0
  • Potyondy, D.O., 2012. A flat-jointed bonded-particle material for hard rock. In: A. Bobet, et al., ed. Proceedings of the 46th US Rock Mechanics/Geomechanics Symposium. Alexandria, VA:American Rock Mechanics Association; III:1510–1519
  • Potyondy, D.O. and Cundall, P.A., 2004. A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41 (8), 1329–1364. doi:10.1016/j.ijrmms.2004.09.011
  • Richard, T., et al., 2012. Rock strength determination from scratch tests. Engineering Geology, 147-148, 91–100. doi:10.1016/j.enggeo.2012.07.011
  • Rojek, J., et al., 2011. Discrete element simulation of rock cutting. International Journal of Rock Mechanics and Mining Sciences, 48 (6), 996–1010. doi:10.1016/j.ijrmms.2011.06.003
  • Scholtès, L. and Donzé, F.V., 2013. A DEM model for soft and hard rocks: role of grain interlocking on strength. Journal of the Mechanics and Physics of Solids, 61 (2), 352–369. doi:10.1016/j.jmps.2012.10.005
  • Šmilauer, V. et al, 2015.Yade documentation.2nd.Geneva: CERN-Zenodo 521. doi:10.5281/zenodo.34073
  • Starfield, A.M. and Cundall, P.A., 1988. Towards a methodology for rock mechanics modelling. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 25 (3), 99–106. doi:10.1016/0148-9062(88)92292-9
  • Su, O. and Akcin, N.A., 2011. Numerical simulation of rock cutting using the discrete element method. International Journal of Rock Mechanics and Mining Sciences, 48 (3), 434–442. doi:10.1016/j.ijrmms.2010.08.012
  • Tan, Y., Yang, D., and Sheng, Y., 2008. Study of polycrystalline Al2O3 machining cracks using discrete element method. International Journal of Machine Tools and Manufacture, 48 (9), 975–982. doi:10.1016/j.ijmachtools.2008.01.010
  • Tropin, N.M., Manakov, A.V., and Bocharov, O.B., 2015. Selection of geometrical parameters for discrete element modeling of rock cutting. International Journal of Structural and Civil Engineering Research, 4 (2), 227–230. doi:10.18178/ijscer.4.2.227-230
  • van Wyk, G., et al., 2014. Discrete element simulation of tribological interactions in rock cutting. International Journal of Rock Mechanics and Mining Sciences, 65, 8–19. doi:10.1016/j.ijrmms.2013.10.003
  • Yanxin, L., et al., 2017. Bonded-cluster simulation of rock-cutting using PFC2D. Cluster Computations, 20, 1289–1301. doi:10.1007/s10586-017-0808-5
  • Yoon, J., 2007. Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. International Journal of Rock Mechanics and Mining Sciences, 44 (6), 871–889. doi:10.1016/j.ijrmms.2007.01.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.